MATH 120-02 (Kunkle), Exam 1
100 pts, 75 minutes
Name:
Sept 12, 2023
Page 1 of 1
No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 3 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
$1 \mathrm{a}(10 \mathrm{pts})$. State the precise, $\varepsilon-\delta$ definition of what it means for $\lim _{x \rightarrow c} g(x)=K$.
$1 \mathrm{~b}(9 \mathrm{pts})$. Write an $\varepsilon-\delta$ proof of the fact that $\lim _{x \rightarrow-2}(4-3 x)=10$.
$2(32 \mathrm{pts})$. Evaluate the limit or briefly explain why it does not exist.
a. $\lim _{x \rightarrow-2} \frac{x^{2}-4}{2 x^{2}+3 x-2}$
b. $\lim _{x \rightarrow 5} \frac{\sqrt{3 x+1}-4}{x-5}$
c. $\lim _{x \rightarrow 3^{+}} \frac{2-x}{x-3}$
d. $\lim _{x \rightarrow-\infty} \frac{3 x^{2}+2}{x^{3}+2 x}$
e. $\lim _{x \rightarrow \infty} \frac{e^{2 x}-3 e^{-x}}{3 e^{2 x}+e^{-x}}$
f. $\lim _{x \rightarrow 1^{+}} \ln (x-1)$
3. (Supporting work is not required on this problem.) See the graph of $k(x)$.
$\mathrm{a}(4 \mathrm{pts})$. At which x-values, if any, is $k(x)$ discontinuous?
$\mathrm{b}(2 \mathrm{pts})$. At which x-values, if any, is $k(x)$ discontinuous but continuous from the left?

3 , continued(11 pts). Find the following. Your answer to each should be $\infty,-\infty$, a number, or "DNE" (for "does not exist").
c. $\lim _{x \rightarrow 1} k(x)$
d. $\lim _{x \rightarrow 5} k(x)$
e. $k(1)$
f. $k(4)$
g. $\lim _{x \rightarrow 3^{-}} k(x)$
h. $\lim _{x \rightarrow 6} k(x)$
i. $k(2)$
j. $k(6)$
k. $\lim _{x \rightarrow 4} k(x)$

1. $\lim _{x \rightarrow \infty} k(x)$
m. $k(3)$
$4(7 \mathrm{pts})$. On the axes below, sketch the graph of a continuous function $v(x)$ on the the interval $[0,4]$ for which $v(0)=v(2)=v(4)=0, v^{\prime}(2)=-1$, and $v^{\prime}(1)=v^{\prime}(3)=0$.
5 . Let $g(x)=\frac{1}{3 x+2}$. The point $\left(0, \frac{1}{2}\right)$ is on the graph of $g(x)$.
$5 \mathrm{a}(5 \mathrm{pts})$. Find the slope of the secant line joining the point $\left(0, \frac{1}{2}\right)$ and the point on the graph of $g(x)$ corresponding to $x=1$.
$5 \mathrm{~b}(15 \mathrm{pts})$. Use the definition of the derivative to find $g^{\prime}(a)$.
You can use shortcut methods from Chapter 3 to check your work, but to receive credit on this problem, you must calculate the derivative from its definition as a limit.
$5 \mathrm{c}(5 \mathrm{pts})$. Find an equation of the line tangent to the graph of $g(x)$ at the point $\left(0, \frac{1}{2}\right)$.
$1 \mathrm{a}(10 \mathrm{pts})$.(Source: Students were told in class to be prepared to state this definition from section 2.4.) $\lim _{x \rightarrow c} g(x)=K$ means that, for any positive number ε, there's a corresponding positive number δ with the property that $|g(x)-K|<\varepsilon$ whenever $0<|x-c|<\delta$.
In this definition and the proof below, wording matters. Small changes in wording can significantly change the meaning of what you've written.
1 b (9 pts).(Source: $2.4 .20,2.4 . \mathrm{re} 7$) Here's the thinking I did before writing my proof:

$$
|4-3 x-10|=|-3 x-6|=|-3||x+2|=3|x+2| \text {. }
$$

To acheive $3|x+2|<\varepsilon$, just make sure that $|x+2|<\frac{1}{3} \varepsilon=\delta$.
Proof: Suppose that $\varepsilon>0$, and choose $\delta=\frac{1}{3} \varepsilon$. Then

$$
|4-3 x-10|=|-3 x-6|=|-3||x+2|=3|x+2|<3 \delta=\varepsilon
$$

whenever $0<|x+2|<\delta$, as desired.
$2 \mathrm{a}(6 \mathrm{pts})$.(Source: 2.3.15) Factor and cancel: $\lim _{x \rightarrow-2} \frac{(x-2)(x+2)}{(2 x-1)(x+2)}=\lim _{x \rightarrow-2} \frac{x-2}{2 x-1}=\frac{-4}{-5}=\frac{4}{5}$. $2 \mathrm{~b}(8 \mathrm{pts})$.(Source: $2.3 .21,22$) Rationalize the numerator:

$$
\begin{aligned}
\frac{\sqrt{3 x+1}-4}{x-5} \cdot \frac{\sqrt{3 x+1}+4}{\sqrt{3 x+1}+4} & =\frac{\sqrt{3 x+1}^{2}-4^{2}}{(x-5)(\sqrt{3 x+1}+4)}=\frac{(3 x+1)-16}{(x-5)(\sqrt{3 x+1}+4)} \\
& =\frac{3 x+1-15}{(x-5)(\sqrt{3 x+1}+4)}=\frac{3(x-5)}{(x-5)(\sqrt{3 x+1}+4)}
\end{aligned}
$$

which, as long as $x \neq 5$, equals

$$
\frac{3}{\sqrt{3 x+1}+4} .
$$

Therefore the limit in 2 b is the same as

$$
\lim _{x \rightarrow 5} \frac{3}{\sqrt{3 x+1}+4}=\frac{3}{\sqrt{16}+4}=\frac{3}{8}
$$

$2 \mathrm{c}(4 \mathrm{pts})$.(Source: $2.2 .31,32$) As $x \rightarrow 3^{+}, \frac{2-x}{x-3}$ looks like " $\frac{-1}{0}$," indicating blow-up. Examine the signs. The numerator is near -1 and therefore must be negative. When $x>3$, $x-3>0$, so the fraction is $\bar{\mp}=-$ and so $\lim _{x \rightarrow 3^{+}} \frac{2-x}{x-3}=-\infty$.
$2 \mathrm{~d}(4 \mathrm{pts})$.(Source: $2.6 .18,31$) The limit as $x \rightarrow \pm \infty$ of a rational function is the same as the limit of the ratio of its lead terms:

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{2}+2}{x^{3}+2 x}=\lim _{x \rightarrow-\infty} \frac{3 x^{2}}{x^{3}}=\lim _{x \rightarrow \infty} \frac{3}{x}=0
$$

$2 \mathrm{e}(8 \mathrm{pts})$.(Source: 2.6 .36$)$ The limit looks like $" \frac{\infty}{\infty} "$. Factor out the dominant terms of the numerator and denominator:

$$
\frac{e^{2 x}-3 e^{-x}}{3 e^{2 x}+e^{-x}}=\frac{e^{2 x}\left(1-3 e^{-3 x}\right)}{e^{2 x}\left(3+e^{-3 x}\right)}=\frac{1-3 e^{-3 x}}{3+e^{-3 x}}
$$

$\lim _{x \rightarrow \infty} e^{-3 x}=0$, so

$$
\lim _{x \rightarrow \infty} \frac{1-3 e^{-3 x}}{3+e^{-3 x}}=\frac{1}{3}
$$

$2 \mathrm{f}(2 \mathrm{pts})$.(Source: 2.2.35) Recall from the graph of $\ln x$ that $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$. As $x \rightarrow 1^{+}$ in $2 \mathrm{f},(x-1) \rightarrow 0^{+}$, and so $\lim _{x \rightarrow 1^{+}} \ln (x-1)=-\infty$. (See also Example 11, p. 62 of the text.)
3.(Source: 2.2.4-9, 2.5.3, 2.6.3.4)
$\mathrm{a}(4 \mathrm{pts})$. The x-values where $k(a)$ fails to equal $\lim _{x \rightarrow a} k(x)$ are $1,3,4$, and 5 .
$\mathrm{b}(2 \mathrm{pts})$. At $1,3,4$, and $5, k$ is continuous from the left only at 5 . There, $k(5)=1=$ $\lim _{x \rightarrow 5^{-}} k(x)$.
Remaining parts are worth 1 point each.
c. $-\infty$
d. DNE
e. DNE
f. DNE
g. 1
h. 0
i. 0
j. 0
k. -1
l. 0
m. 0
$4(7 \mathrm{pts})$.(Source: 2.7.24) You can see a correct graph of $v(x)$ at

https://www.desmos.com/calculator/mhkrll1b6h

$5 \mathrm{a}(5 \mathrm{pts})$.(Source: 2.1.3) $\quad g(1)=\frac{1}{5}$, and the slope of the line joining the points $\left(0, \frac{1}{2}\right)$ and $\left(1, \frac{1}{5}\right)$ is $\frac{\frac{1}{5}-\frac{1}{2}}{1-0}$, or $-\frac{3}{10}$.

5 b (15 pts).(Source: 2.7.8,33, 2.7.more. 1 k)

$$
\begin{aligned}
g^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{\frac{1}{3(a+h)+2}-\frac{1}{3 a+2}}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{3(a+h)+2}-\frac{1}{3 a+2}}{h} \cdot \frac{(3(a+h)+2)(3 a+2)}{(3(a+h)+2)(3 a+2)} \\
& =\lim _{h \rightarrow 0} \frac{(3 a+2)-(3(a+h)+2)}{h(3(a+h)+2)(3 a+2)} \\
& =\lim _{h \rightarrow 0} \frac{3 a+2-3 a-3 h-2}{h(3(a+h)+2)(3 a+2)} \\
& =\lim _{h \rightarrow 0} \frac{-3 h}{h(3(a+h)+2)(3 a+2)}=\lim _{h \rightarrow 0} \frac{-3}{(3(a+h)+2)(3 a+2)}=\frac{-3}{(3 a+2)^{2}}
\end{aligned}
$$

$5 \mathrm{c}(5 \mathrm{pts})$.(Source: 2.7.8) The line with slope $g^{\prime}(0)=-\frac{3}{4}$ passing through the point $\left(0, \frac{1}{2}\right)$ is $y-\frac{1}{2}=-\frac{3}{4} x$.

