MATH 120-02 (Kunkle), Exam 3
Name:
Oct 31, 2023
Page 1 of 1
No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 3 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
$1 \mathrm{a}(6 \mathrm{pts})$. Fill in the blanks to complete this statement of the Mean Value Theorem (MVT).
If the function $f(x)$ is \qquad ,
then there is a number c in
with the property that
\qquad
$1 \mathrm{~b}(7 \mathrm{pts})$. Find all c as promised by the MVT for $f(x)=x^{3}-2 x$ on the interval $[-1,1]$.
$2(9 \mathrm{pts})$. Find the linearization $L(x)$ of the function $\cos x$ at $a=\frac{\pi}{6}$.
$3(10 \mathrm{pts})$. Sketch the graph of a function $h(x)$ satisfying all of the following.
$h(x)$ is defined for all x other than 0.
$h(x)$ is continuous on $(-\infty, 0)$ and on $(0, \infty)$.
$x=0$ is an asymptote of the graph of $h(x)$

$$
\begin{aligned}
& h^{\prime}(x)>0 \text { on }(-1,0) \\
& h^{\prime}(x)<0 \text { on }(-\infty,-1) \text { and on }(0, \infty) \\
& h^{\prime \prime}(x)>0 \text { on }(-3,0) \text { and on }(0, \infty) \\
& h^{\prime \prime}(x)<0 \text { on }(-\infty,-3)
\end{aligned}
$$

4(10 pts). Evaluate the limit: $\lim _{x \rightarrow 1} \frac{x-1-\ln x}{(x-1)^{2}}$
$5(14 \mathrm{pts})$. Find the absolute maximum and minimum of $x^{2}+\frac{16}{x}$ on the interval $[1,10]$.
$6(18 \mathrm{pts})$. A jet flying horizontally at altitude 1 km with constant speed $200 \mathrm{~km} / \mathrm{hr}$ passes directly over an observer on the ground. How fast is the angle of elevation from the observer to the jet decreasing when the two are 2 km apart?
("angle of elevation" is the angle between the line from observer to jet and the horizontal.) $7(20 \mathrm{pts})$. The function $s(x)=(6-x) \sqrt{x}$ has for its domain the interval [0, $\infty)$. Find the following, if they exist.
a. The interval(s) on which $s(x)$ is increasing.
b. The interval(s) on which $s(x)$ is concave up.
c. The x-value(s) at which $s(x)$ has a local maximum.
d. The x-value(s) at which $s(x)$ has a local minimum.
e. The x-value(s) at which $s(x)$ has an inflection point.
$8(6 \mathrm{pts})$. A particle traveling on an axis is at position $s(t)=(6-t) \sqrt{t}$ for all $t \geq 0$.
Answer the following. You are not required to repeat work you already did in problem 7 .
a. On what interval(s) of time t is the particle moving in the positive direction?
b. Find the total distance traveled by the particle from time $t=0$ to $t=6$.
$1 \mathrm{a}(6 \mathrm{pts})$.(Source: Students were told in class to prepare for this question from 4.2.) If $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b), then there is a number c in (a, b) with the property that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

$1 \mathrm{~b}(7 \mathrm{pts})$.(Source: 4.2 .12$)$ Set $f^{\prime}(c)=3 c^{2}-2$ equal to $\frac{f(1)-f(-1)}{1-(-1)}=\frac{-1-1}{2}=-1$ and solve:

$$
3 c^{2}-2=-1 \quad \Longrightarrow \quad 3 c^{2}=1 \quad \Longrightarrow \quad c^{2}=\frac{1}{3} \quad \Longrightarrow \quad c= \pm \sqrt{\frac{1}{3}}
$$

$2(9 \mathrm{pts}) \cdot$ (Source: 3.10.1-4) Generally, $L(x)=f(a)=f^{\prime}(a)(x-a)$. Since $(\cos x)^{\prime}=\sin x$,

$$
L(x)=\cos (\pi / 6)-\sin (\pi / 6)\left(x-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}-\frac{1}{2}\left(x-\frac{\pi}{6}\right)
$$

$3(10 \mathrm{pts})$.(Source: 4.3.24-31) Here is one possible graph. In a correct solution, $h(x)$ is decreasing on $(-\infty,-1)$ and on $(0, \infty)$, and increasing on $(-1,0)$. The graph is concave up on $(-3,0)$ and on $(0, \infty)$, and concave down on $(-\infty,-3)$.

4(10 pts).(Source: 4.4.27,28) Either apply l'Hospital's Rule twice:

$$
\frac{x-1-\ln x}{(x-1)^{2}}=\frac{" 0}{0} \stackrel{"{ }^{H R}}{\hookrightarrow} \frac{1-x^{-1}}{2(x-1)}=" \frac{0}{0} \stackrel{"{ }^{H R}}{\hookrightarrow} \frac{x^{-2}}{2} \longrightarrow \frac{1}{2}
$$

Or, use l'Hôpital's Rule once and simplify the result by multiplying top and bottom by x :

$$
\frac{x-1-\ln x}{(x-1)^{2}}=\frac{" 0}{0} \stackrel{\text { "HR }}{\hookrightarrow} \frac{1-x^{-1}}{2(x-1)} \cdot \frac{x}{x}=\frac{x-1}{2 x(x-1)}=\frac{1}{2 x} \longrightarrow \frac{1}{2}
$$

Either way, l'Hospital's Rule tells us that the original limit also equals $\frac{1}{2}$.
$5(14 \mathrm{pts})$.(Source: 4.1.53) The absolute extrema of $k(x)=x^{2}+16 x^{-1}$ on [1,10] can occur only at the endpoints or critical points inside $(1,10)$.
$k^{\prime}(x)=2 x-16 x^{-2}=2 x-\frac{16}{x^{2}}$ is defined everywhere on $(1,10)$, so the only critical points are where $k^{\prime}(x)=0$:

$$
2 x-\frac{16}{x^{2}}=0 \quad \Longrightarrow \quad 2 x=\frac{16}{x^{2}} \quad \Longrightarrow \quad x^{3}=8 \quad \Longrightarrow \quad x=2
$$

Now compare values of $k(x)$ at the endpoints and the critical point:

x	1	2	10
$x^{2}+\frac{16}{x}$	$1+16=17$	$4+\frac{16}{4}=8$	$100+\frac{16}{10}=101.6$

On $[1,10]$, the absolute maximum of k is 101.6 and its absolute minimum is 8 .
$6(18 \mathrm{pts})$.(Source: $3.9 .43,45$) See figure at right. The question asks for $\frac{d \theta}{d t}$, given that $\frac{d x}{d t}=200$. It does not ask for or give information about the derivative of any other function. Relate x and θ (and, importantly, no other variables) in a trig equation, then differentiate to get a relationship between their derivatives:

$$
\frac{x}{1}=\cot \theta \quad \Longrightarrow \quad \frac{d x}{d t}=-\csc ^{2} \theta \frac{d \theta}{d t}
$$

At the moment in question, the hypotenuse is 2 (which means θ must be $\pi / 6$) and $\csc \theta=$ $\frac{1}{\sin \theta}=\frac{1}{1 / 2}=2$. Now solve:

$$
200=-2^{2} \cdot \frac{d \theta}{d t} \quad \Longrightarrow \quad-50=\frac{d \theta}{d t} .
$$

$7(20 \mathrm{pts})$.(Source: 4.3.43-45) $\quad s(x)=6 x^{1 / 2}-x^{3 / 2}=6 \sqrt{x}-(\sqrt{x})^{3}$.
a. $s^{\prime}(x)=3 x^{-1 / 2}-\frac{3}{2} x^{1 / 2}=\frac{3}{2} x^{-1 / 2}(2-x)$. Here's a sign chart for s^{\prime} :

$$
\begin{array}{rc}
\frac{3}{2} x^{-1 / 2}=\frac{3}{2 \sqrt{x}}: & \text { DNE }++++++++++++++++ \\
2-x: & +++++0---------- \\
\frac{3}{2} x^{-1 / 2}(2-x): & \text { DNE }++++0---------
\end{array}
$$

$s(x)$ increases on $[0,2]$.
b. $s^{\prime \prime}=-\frac{3}{2} x^{-3 / 2}-\frac{3}{4} x^{-1 / 2}=-\frac{3}{2} \frac{1}{(\sqrt{x})^{3}}-\frac{3}{4} \frac{1}{\sqrt{x}}<0$ for all $x>0$. The graph of s is never concave up.
c. By the first derivative test, s has a local maximum at $x=2$, and \ldots
d. ... no local minimum.
e. Since its graph never changes concavity, the graph of s has no inflection points.
8.(Source: 3.7.1-4)
$\mathrm{a}(2 \mathrm{pts})$. The particle is moving forward when $s(t)$ is increasing. In problem 7 , we saw that this is when $0 \leq t \leq 2$.
$\mathrm{b}(4 \mathrm{pts})$. At any time, we can calculate the particle's position using $s(t)=(6-t) \sqrt{t}$. From time $t=0$ to $t=2$, the particle moves forward from position $s(0)=0$ to $s(2)=4 \sqrt{2}$, and from $t=2$ to $t=6$, it moves backward from position $s(2)=4 \sqrt{2}$ to $s(6)=0$. That's $4 \sqrt{2}$ units forward and $4 \sqrt{2}$ units backward for a total of $8 \sqrt{2}$ units.

