MATH 120-04,11 (Kunkle), Exam 1
100 pts, 75 minutes
Name:
Feb 1, 2024
Page 1 of 1
No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 3 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
You will not receive credit for using l'Hospital's Rule (a technique learned later in a calculus course) on any problem on this exam.

1. If a ball is thrown into the air with a velocity of $40 \mathrm{ft} / \mathrm{sec}$, its height t seconds later is given by $s(t)=40 t-16 t^{2}$.
$\mathrm{a}(14 \mathrm{pts})$. Use the definition of the derivative to find the ball's velocity function $s^{\prime}(a)$.
You can use shortcut methods from Chapter 3 to check your work, but to receive credit on this problem, you must calculate the derivative from its definition as a limit.
$\mathrm{b}(3 \mathrm{pts})$. What is the ball's instantaneous velocity at time $t=1$?
2. Total rainfall is measured in centimeters (cm). During a storm yesterday, I recorded the total rainfall in my yard every ten minutes. Here are some of my measurements,

time	$1: 40$	$1: 50$	$2: 00$	$2: 10$	$2: 20$
total rainfall (cm)	0.0	0.6	2.0	3.2	3.6

$\mathrm{a}(5 \mathrm{pts})$. Over what ten-minute interval was the average rate of rainfall (in cm per minute) greatest? What was that average rate over those ten minutes?
$\mathrm{b}(4 \mathrm{pts})$. What was the approximate rate of rainfall $(\mathrm{cm} / \mathrm{min})$ at time 2:00?
$3(13 \mathrm{pts})$. Use the graph of $p(x)$ to find the following. Supporting work is not required. Your answer to ah should be $\infty,-\infty$, a number, or "dne."
a. $\lim _{x \rightarrow-2} p(x)$
b. $p(-2)$
c. $\lim _{x \rightarrow-2^{+}} p(x)$
d. $\lim _{x \rightarrow-1} p(x)$
e. $\lim _{x \rightarrow 4} p(x)$
f. $\lim _{x \rightarrow \infty} p(x)$
g. $p(-1)$
h. $p(2)$

i. At what x-values, if any, is $p(x)$ discontinuous? At these points, is $p(x)$ continuous from the right, from the left, or neither? Supporting work not required.
$4(36 \mathrm{pts})$. Evaluate the limit or briefly explain why it does not exist.
a. $\lim _{x \rightarrow-\infty} \frac{2 x^{2}-7 x}{x+5}$
b. $\lim _{x \rightarrow \infty} \frac{2 x+4}{x+3}$
c. $\lim _{x \rightarrow \infty}(\ln (2 x+4)-\ln (x+3))$
d. $\lim _{x \rightarrow 1} \frac{\sqrt{3-x}-\sqrt{3 x-1}}{x-1}$
e. $\lim _{x \rightarrow 1} \frac{x^{2}+4 x-5}{2 x^{2}+3 x-5}$
f. $\lim _{x \rightarrow 1} \frac{2 x-3}{(x-1)^{2}}$
$5 \mathrm{a}(10 \mathrm{pts})$. State the precise, $\varepsilon-\delta$ definition of what it means for $\lim _{x \rightarrow r} s(x)=P$.
$5 \mathrm{~b}(15 \mathrm{pts})$. Write an $\varepsilon-\delta$ proof that $\lim _{x \rightarrow-1}(3 x+8)=5$.
$1 \mathrm{a}(14 \mathrm{pts})$.(Source: $2.7 .8,33,2.7 . \mathrm{more} .1 \mathrm{k}) \quad s^{\prime}(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{40(a+h)-16(a+h)^{2}-\left(40 a-16 a^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{40(a+h)-16\left(a^{2}+2 a h+h^{2}\right)-\left(40 a-16 a^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{40 a+40 h-16 a^{2}-32 a h-16 h^{2}-40 a+16 a^{2}}{h}=\lim _{h \rightarrow 0} \frac{40 h-32 a h-16 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(40-32 a-16 h)}{h}=\lim _{h \rightarrow 0}(40-32 a-16 h)=40-32 a .
\end{aligned}
$$

$1 \mathrm{~b}(3 \mathrm{pts})$.(Source: 2.7.8) The object's velocity is the the derivative of its position: $s^{\prime}(1)=$ $40-32=8($ feet per second $)$.
$2 \mathrm{a}(5 \mathrm{pts})$.(Source: 2.1.1) Here are the amounts of rain that fell in each ten-minute period and the average rate of rainfall in each:

time interval	$1: 40-1: 50$	$1: 50-2: 00$	$2: 00-2: 10$	$2: 10-2: 20$
rainfall during that interval (cm)	0.6	1.4	1.2	0.4
average rate of rainfall $(\mathrm{cm} / \mathrm{min})$	0.06	0.14	0.12	0.04

Not all these calculations are necessary to answer the question correctly. The period with heaviest rainfall was 1:50-2:00, when the average rate of rainfall was $\frac{1.4}{10}=0.14 \mathrm{~cm} / \mathrm{min}$. Corrected, Apr 25. Thanks to R.S. for pointing out my error.

2 b (4 pts). Average rate of rainfall from 1:50-2:00 was $0.14 \mathrm{~cm} / \mathrm{min}$, the average rate of rainfall from $2: 00-2: 10$ was $0.12 \mathrm{~cm} / \mathrm{min}$, and their average is $0.13 \mathrm{~cm} / \mathrm{min}$. Any one of these is a reasonable approximation to the rate of rainfall at 2:00.

3 (13 pts).(Source: 2.2.4-9, 2.6.3-4) a DNE. b1. c1. d2. e0. f3. g DNE. h3.
i. $p(x)$ is discontinuous where it does not exist $(x=-1)$, where its limit does not exist $(x=$ $-2)$ and where the limit and function value disagree $(x=2)$. Since $p(-2)=\lim _{x \rightarrow-2^{-}} p(x)$, p is continuous from the left at -2 . It is neither left- nor right-continuous at -1 or at 2 .
$4 \mathrm{a}(4 \mathrm{pts})$.(Source: 2.6 .42) The limit at $-\infty$ of a rational function is determined by its lead terms in top and bottom: $\lim _{x \rightarrow-\infty} \frac{2 x^{2}-7 x}{x+5}=\lim _{x \rightarrow-\infty} \frac{2 x^{2}}{x}=\lim _{x \rightarrow-\infty} 2 x=-\infty$.
$4 \mathrm{~b}(4 \mathrm{pts})$.(Source: 2.6.15) By the same method, $\lim _{x \rightarrow \infty} \frac{2 x+4}{x+3}=\lim _{x \rightarrow \infty} \frac{2 x}{x}=\lim _{x \rightarrow \infty} 2=2$.
$4 \mathrm{c}(6 \mathrm{pts})$.(Source: 2.6.42) Using property 5 of the natural log , p. 17 of the review notes https://kunklet.people.cofc.edu/MATH120/120review.pdf, $\lim _{x \rightarrow \infty}(\ln (2 x+4)-\ln (x+3))=\lim _{x \rightarrow \infty} \ln \left(\frac{2 x+4}{x+3}\right)=\ln \left(\lim _{x \rightarrow \infty}\left(\frac{2 x+4}{x+3}\right)\right)=\ln 2$.
$4 \mathrm{~d}(9 \mathrm{pts})$.(Source: 2.3.25) Rationalize the numerator by means of the conjugate:

$$
\begin{aligned}
& \lim _{x \rightarrow 1}\left(\frac{\sqrt{3-x}-\sqrt{3 x-1}}{x-1}\right)\left(\frac{\sqrt{3-x}+\sqrt{3 x-1}}{\sqrt{3-x}+\sqrt{3 x-1}}\right) \\
= & \lim _{x \rightarrow 1} \frac{(3-x)-(3 x-1)}{(x-1)(\sqrt{3-x}+\sqrt{3 x-1})}=\lim _{x \rightarrow 1} \frac{4-4 x}{(x-1)(\sqrt{3-x}+\sqrt{3 x-1})} \\
= & \lim _{x \rightarrow 1} \frac{-4(x-1)}{(x-1)(\sqrt{3-x}+\sqrt{3 x-1})}=\lim _{x \rightarrow 1} \frac{-4}{\sqrt{3-x}+\sqrt{3 x-1}}=\frac{-4}{2 \sqrt{2}}=-\sqrt{2}
\end{aligned}
$$

$4 \mathrm{e}(7 \mathrm{pts})$.(Source: $2.3 \cdot 15,16$) Find and cancel the common factor.

$$
\lim _{x \rightarrow 1} \frac{x^{2}+4 x-5}{2 x^{2}+3 x-5}=\lim _{x \rightarrow 1} \frac{(x-1)(x+5)}{(x-1)(2 x+5)}=\lim _{x \rightarrow 1} \frac{x+5}{2 x+5}=\frac{6}{7}
$$

$4 \mathrm{f}(6 \mathrm{pts})$.(Source: 2.2 .33) As $x \rightarrow 1, \frac{2 x-3}{(x-1)^{2}}$ goes to " $\frac{-1}{0}$," indicating that the limit is infinite. To decide between $\pm \infty$, observe that the numerator must be negative (at least for x close to 1), because it approaches -1 . The denominator is a square must be positive (except when $x=1$). Therefore the fraction is negative, and its limit must be $-\infty$.

5 a (10 pts).(Source: Students were told in class to be prepared to state this definition from section 2.4.) $\lim _{x \rightarrow r} s(x)=P$ means that for every posiive number ε, there's a corresponding positive number δ for which $|s(x)-P|<\varepsilon$ whenever $0<|x-r|<\delta$.

In this definition and the proof below, wording matters. Small changes in wording can significantly change the meaning of what you've written.

5 b (15 pts).(Source: 2.4.21,22, 2.4.re7, 2.4.more.1g) Here's the thinking I did before writing my proof: $|3 x+8-5|=|3 x-3|=|3||x-1|=3|x-1|$. We can make this less than ε by taking $|x-1|<\frac{1}{3} \varepsilon$.
Proof: Suppose that $\varepsilon>0$, and choose $\delta=\frac{1}{3} \varepsilon$. Then

$$
|3 x+8-5|=|3 x-3|=|3||x-1|=3|x-1|<3 \delta=\varepsilon
$$

whenever $0<|x-1|<\delta$. QED

