MATH 120-11 (Kunkle), Exam 2
100 pts, 75 minutes
Name:
Feb 22, 2024
Page 1 of 1
No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
You will not receive credit for using l'Hospital's Rule (a technique learned later in a calculus course) on any problem on this exam.
$1(7 \mathrm{pts})$. Find y^{\prime} and $y^{\prime \prime}$ if $y=\sin \left(\pi x^{2}\right)$. You are not required to simplify.
$2(16 \mathrm{pts})$. Find $\frac{d y}{d x}$ along the curve $\ln |x y|=\frac{y}{x^{2}+1}$. You are not required to simplify.
$3 \mathrm{a}(8 \mathrm{pts})$. Find the equation of the line tangent to $y=e^{x}-3 x$ at the point $(x, y)=\left(2, e^{2}-6\right)$.
$3 \mathrm{~b}(4 \mathrm{pts})$. Find all points x at which the line tangent to $y=e^{x}-3 x$ is parallel to the line $y-2 x=1$.
4. Suppose that, t seconds after a ball is shot vertically upwards from a gun at the top of a tower, its height above ground is $s=100-16(t-2)^{2}$ feet.
$\mathrm{a}(8 \mathrm{pts})$. From what height and with what velocity was the ball fired? Use the correct units in your answers.
$\mathrm{b}(4 \mathrm{pts})$. When does the ball reach its maximum height?
$\mathrm{c}(4 \mathrm{pts})$. When does the ball hit the ground?
$5(4 \mathrm{pts})$. The figure shows the graphs of the function $2.4 . ~$ a answers.
a. $x \sqrt{x}-\frac{2}{x^{3}}+\sin \left(\frac{\pi}{4}\right)$
b. $(\tan x+\cot x)^{2}$
c. $(\ln x)(\sin x)$
d. $\ln \left(x e^{4 x}\right)$
e. $\frac{2+e^{x}}{1-2 \tan x}$
f. $\tan ^{-1}\left(\csc ^{2} x\right)$
g. $x^{3} \cos x \sin ^{-1} x$
h. $(\sec x)^{x}$
i. $x^{2} e^{\left(\frac{1}{3} x^{3}\right)}$

1 (7 pts).(Source: 3.4.47-50) By the chain rule, $y^{\prime}=\cos \left(\pi x^{2}\right)\left(\pi x^{2}\right)^{\prime}=2 \pi x \cos \left(\pi x^{2}\right)$. Then by the product and chain rules,

$$
\begin{aligned}
y^{\prime \prime} & =(2 \pi x)^{\prime}\left(\cos \left(\pi x^{2}\right)\right)+(2 \pi x)\left(\cos \left(\pi x^{2}\right)\right)^{\prime}=2 \pi \cos \left(\pi x^{2}\right)-2 \pi x \sin \left(\pi x^{2}\right)(2 \pi x) \\
& =2 \pi \cos \left(\pi x^{2}\right)-\left(4 \pi^{2} x^{2}\right) \sin \left(\pi x^{2}\right)
\end{aligned}
$$

$2(16 \mathrm{pts})$.(Source: $3 \cdot 5 \cdot 17-20)$ Think of y as an unknown function of x, differentiate both sides of $\ln |x y|=\frac{y}{x^{2}+1}$ with respect to x, and solve for $\frac{d y}{d x}$:

$$
\begin{array}{r|r}
\frac{1}{x y}\left(y+x \frac{d y}{d x}\right)=\frac{\frac{d y}{d x}\left(x^{2}+1\right)-y(2 x)}{\left(x^{2}+1\right)^{2}} & \begin{aligned}
\frac{1}{y} \frac{d y}{d x}-\frac{1}{x^{2}+1} \frac{d y}{d x} & =-\frac{1}{x}-\frac{2 x y}{\left(x^{2}+1\right)^{2}} \\
\frac{1}{x}+\frac{1}{y} \frac{d y}{d x}=\frac{1}{x^{2}+1} \frac{d y}{d x}-\frac{2 x y}{\left(x^{2}+1\right)^{2}} & \left(\frac{1}{y}-\frac{1}{x^{2}+1}\right) \frac{d y}{d x}
\end{aligned}=-\frac{1}{x}-\frac{2 x y}{\left(x^{2}+1\right)^{2}} \\
\frac{d y}{d x} & =\frac{-\frac{1}{x}-\frac{2 x y}{\left(x^{2}+1\right)^{2}}}{\frac{1}{y}-\frac{1}{x^{2}+1}}
\end{array}
$$

3a(8 pts).(Source: 3.1.34) Along this curve, $\frac{d y}{d x}=e^{x}-3$, which at $x=2$, equals $e^{2}-3$. The point-slope equation of the line is $y-\left(e^{2}-6\right)=\left(e^{2}-3\right)(x-2)$.
$3 \mathrm{~b}(4 \mathrm{pts})$.(Source: $3 \cdot 1 \cdot 56,58-60$) The line $y=2 x+1$ has slope 2 . Set $\frac{d y}{d x}=2$ and solve for x :

$$
e^{x}-3=2 \quad \Longrightarrow \quad e^{x}=5 \quad \Longrightarrow \quad x=\ln 5
$$

$4 \mathrm{a}(8 \mathrm{pts})$.(Source: $3.7,7,8) \quad$ Since s equals height, $\frac{d s}{d t}=0-16 \cdot 2(t-2)^{1}(t-2)^{\prime}=-32(t-2)$ is the (vertical) velocity of the ball. When the ball was launched at time $t=0$, its height was $s(0)=100-16(-2)^{2}=36 \mathrm{ft}$ and its velocity was $s^{\prime}(0)=-32(-2)=64 \mathrm{ft} / \mathrm{sec}$.
$4 \mathrm{~b}(4 \mathrm{pts})$. The ball reaches its max height when $s^{\prime}(t)=-32(t-2)=0$, at time $t=2 \mathrm{sec}$.
$4 \mathrm{c}(4 \mathrm{pts}) . s(t)=100-16(t-2)^{2}=0 \Longrightarrow 16(t-2)^{2}=100$

$$
\Longrightarrow(t-2)^{2}=\frac{100}{16} \Longrightarrow t-2= \pm \sqrt{\frac{100}{16}}= \pm \frac{10}{4} \Longrightarrow t=2 \pm \frac{5}{2} .
$$

Since the ball must strike the ground after it reaches its maximum height at time 2, disregard $t=2-\frac{5}{2}$ and conclude that it hits the ground at time $t=2+\frac{5}{2}$, or $\frac{9}{2} \mathrm{sec}$.
$5(4 \mathrm{pts})$.(Source: $2.8 \cdot 49,50$) When the graph of b is horizontal near $x=0$, neither a nor c is zero; since neither a nor c is b^{\prime}, b must be $\ell^{\prime \prime}$. Near $x=4.5$, where b is zero, a is horizontal and c is not. b must be the derivative of a, and so $a=\ell^{\prime}$ and therefore $c=\ell$.
You could also start by observing that c is negative throughout, but neither a nor b always has negative slope. Therefore c must be ℓ, since it is not the derivative of either a or b. You can see the three functions at https://www.desmos.com/calculator/gd0pmp8mkt.
$6 \mathrm{a}(5 \mathrm{pts})$.(Source: $3.1 .4,16,19)$ Rewrite, then differentiate: $\left(x^{3 / 2}-2 x^{-3}+\text { constant }\right)^{\prime}=\frac{3}{2} x^{1 / 2}+6 x^{-4}$.
$6 \mathrm{~b}(4 \mathrm{pts})$.(Source: $3.3 .8,9.3 .4 .7$) Chain rule:
$\left((\tan x+\cot x)^{2}\right)^{\prime}=2(\tan x+\cot x)^{1}(\tan x+\cot x)^{\prime}$

$$
=2(\tan x+\cot x)\left(\sec ^{2} x-\csc ^{2} x\right)
$$

$6 \mathrm{c}(4 \mathrm{pts})$.(Source: 3.3.3) Product rule:
$\frac{d y}{d x}=(\ln x)^{\prime}(\sin x)+(\ln x)(\sin x)^{\prime}=\frac{1}{x} \sin x+(\ln x) \cos x$
$6 \mathrm{~d}(5 \mathrm{pts})$. (Source: $3.6 .9,19$) Simplify before differentiating:

$$
\ln \left(x e^{4 x}\right)=\ln \left(e^{4 x}\right)+\ln x=4 x+\ln x
$$

and so the derivative is $4+\frac{1}{x}$.
$6 \mathrm{e}(6 \mathrm{pts})$.(Source: $3.2 .23,3.3 .9)$ Quotient rule:

$$
\begin{aligned}
& \frac{\left(2+e^{x}\right)^{\prime}(1-2 \tan x)-\left(2+e^{x}\right)(1-2 \tan x)^{\prime}}{(1-2 \tan x)^{2}}= \\
& \frac{e^{x}(1-2 \tan x)-\left(2+e^{x}\right)\left(-2 \sec ^{2} x\right)}{(1-2 \tan x)^{2}}
\end{aligned}
$$

$6 \mathrm{f}(3 \mathrm{pts})$.(Source: 3.5 .54) Use the chain rule twice to differentiate this composition of three functions:
$\begin{aligned} \frac{d y}{d x}= & \frac{1}{1+\left(\csc ^{2} x\right)^{2}}\left(\csc ^{2} x\right)^{\prime}=\frac{1}{1+\left(\csc ^{2} x\right)^{2}} 2 \csc x(\csc x)^{\prime} \\ & =\frac{1}{1+\csc ^{4} x} 2 \csc x(-\csc x \cot x), \text { or }-\frac{2 \csc ^{2} x \cot x}{1+\csc ^{4} x} .\end{aligned}$
6 g (6 pts).(Source: $3.3 .15,3.3$. more.1) Use the product rule for three functions:

$f(x)$	$f^{\prime}(x)$
x^{n}	$n x^{n-1}$
$\ln \|x\|$	x^{-1}
e^{x}	e^{x}
$\sin x$	$-\operatorname{sos} x$
$\cos x$	$-\sec { }^{2} x$
$\tan x$	$-\csc ^{2} x$
$\cot x$	$\sec x \tan ^{2} x$
$\sec x$	$-\csc x \cot x$
$\csc ^{2} x$	$\frac{1}{\sqrt{1-x^{2}}}$
$\sin ^{-1} x$	$\frac{-1}{\sqrt{1-x^{2}}}$
$\cos ^{-1} x$	$\frac{1}{1+x^{2}}$
$\tan ^{-1} x$	$\frac{-1}{1+x^{2}}$
$\cot ^{-1} x$	$\frac{1}{x \sqrt{x^{2}-1}}$
$\sec ^{-1} x$	$\frac{-1}{x^{2}-1}$

$$
\begin{aligned}
\left(x^{3} \cos x \sin ^{-1} x\right)^{\prime} & =\left(x^{3}\right)^{\prime} \cos x \sin ^{-1} x+x^{3}(\cos x)^{\prime} \sin ^{-1} x+x^{3} \cos x\left(\sin ^{-1} x\right)^{\prime} \\
& =3 x^{2} \cos x \sin ^{-1} x-x^{3} \sin x \sin ^{-1} x+x^{3} \cos x \frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$6 \mathrm{~h}(8 \mathrm{pts})$.(Source: $3.6,45,47)$ Rewrite $(\sec x)^{x}$ as $e^{\ln \left((\sec x)^{x}\right)}=e^{x \ln (\sec x)}$. Now differentiate with the chain rule, the product rule, and then the chain rule again:

$$
e^{x \ln (\sec x)}(x \ln \sec x)^{\prime}=e^{x \ln (\sec x)}\left(\ln (\sec x)+x \frac{1}{\sec x} \sec x \tan x\right)
$$

6i(5 pts).(Source: 3.4.36) Product rule, and then chain rule:

$$
\begin{aligned}
\left(x^{2}\right)^{\prime}\left(e^{\left(\frac{1}{3} x^{3}\right)}\right)+\left(x^{2}\right)\left(e^{\left(\frac{1}{3} x^{3}\right)}\right)^{\prime} & =2 x e^{\left(\frac{1}{3} x^{3}\right)}+x^{2} e^{\left(\frac{1}{3} x^{3}\right)}\left(\frac{1}{3} x^{3}\right)^{\prime} \\
& =2 x e^{\left(\frac{1}{3} x^{3}\right)}+x^{2} e^{\left(\frac{1}{3} x^{3}\right)} x^{2}, \text { or } 2 x e^{\left(\frac{1}{3} x^{3}\right)}+x^{4} e^{\left(\frac{1}{3} x^{3}\right)}
\end{aligned}
$$

