MATH 120-04 (Kunkle), Quiz 1
$10 \mathrm{pts}, 10$ minutes

Name:
Jan 18, 2024

1 (8 pts). Sketch the graph of the function. Your graph doesn't need to be perfect, but it should clearly show the locations of any asymptotes and x-intercepts.
a. $y=\ln (-x)$
b. $y=\ln (x-2)$

2 (2 pts). Evaluate the limit, if it exists: $\lim _{x \rightarrow 2^{+}} \ln (x-2)$

Solution:

1.(Source: 1.5.47.48) Both of these graphs can be obtained from the graph of $y=\ln x$ (below left). In Part a, the graph of $y=\ln (-x)$ is obtained by reflecting the graph of $\ln x$ across the line $x=0$. In Part b , the graph of $y=\ln (x-2)$ is obtained by shifting the graph of $\ln x$ to the right 2 units.

$y=\ln x$
a. $y=\ln (-x)$
b. $y=\ln (x-2)$

In both of these, it helps to think of where the functions are defined. Since $\ln x$ is defined only for $x>0$, the function $\ln (-x)$ is defined only when $-x>0$, or $x<0$, and the function $\ln (x-2)$ is defined only when $x-2>0$, or $x>2$.
2.(Source: 2.2.35) $(x-2) \rightarrow 0^{+}$as $x \rightarrow 2^{+}$, and so $\ln (x-2) \rightarrow-\infty$. That is,

$$
\lim _{x \rightarrow 2^{+}} \ln (x-2)=-\infty
$$

This infinite limit is the reason for the vertical asymptote we saw in the graph of $\ln (x-2)$ in Problem 1.

For a review of how changes to an equation affect the equation's graph, see http://kunklet.people.cofc.edu/MATH111/transformations.pdf

MATH 120-11 (Kunkle), Quiz 1
10 pts, 10 minutes

Name:
Jan 18, 2024

1 (10 pts). Find the constants C and $b>0$ so that the exponential function $f(x)=C b^{x}$ has the graph shown here. What is the y-intercept of this graph?

Solution:

1 (10 pts)(Source: 1.4.21-22) . From the given points obtain the equations

$$
\begin{array}{r}
(-1,8) \longrightarrow C b^{-1}=8 \\
(1,18) \longrightarrow C b^{1}=18
\end{array}
$$

Solve for C in the first to obtain $C=8 b$. Substitute this into the second and solve for b :

$$
\begin{aligned}
8 b^{2} & =18 \\
b^{2} & =\frac{18}{8}=\frac{9}{4}
\end{aligned}
$$

Since $b>0$,

$$
b=\sqrt{\frac{9}{4}}=\frac{3}{2}
$$

and

$$
C=8 b=8 \frac{3}{2}=12 .
$$

That is, $f(x)=12\left(\frac{3}{2}\right)^{x}$.
Since $f(0)=C=12$, the y-intercept is the point $(0,12)$.

