MATH 120–04 (Kunkle), Quiz 1	Name:
10 pts, 10 minutes	Jan 18, 2024

1 (8 pts). Sketch the graph of the function. Your graph doesn't need to be perfect, but it should clearly show the locations of any asymptotes and x-intercepts.

a. $y = \ln(-x)$ b. $y = \ln(x-2)$

2 (2 pts). Evaluate the limit, if it exists: $\lim_{x\to 2^+} \ln(x-2)$

Solution:

1.(Source: 1.5.47.48) Both of these graphs can be obtained from the graph of $y = \ln x$ (below left). In Part a, the graph of $y = \ln(-x)$ is obtained by reflecting the graph of $\ln x$ across the line x = 0. In Part b, the graph of $y = \ln(x - 2)$ is obtained by shifting the graph of $\ln x$ to the right 2 units.

In both of these, it helps to think of where the functions are defined. Since $\ln x$ is defined only for x > 0, the function $\ln(-x)$ is defined only when -x > 0, or x < 0, and the function $\ln(x-2)$ is defined only when x-2 > 0, or x > 2.

2.(Source: 2.2.35) $(x-2) \to 0^+$ as $x \to 2^+$, and so $\ln(x-2) \to -\infty$. That is,

$$\lim_{x \to 2^+} \ln(x-2) = -\infty.$$

This infinite limit is the reason for the vertical asymptote we saw in the graph of $\ln(x-2)$ in Problem 1.

For a review of how changes to an equation affect the equation's graph, see http://kunklet.people.cofc.edu/MATH111/transformations.pdf MATH 120–11 (Kunkle), Quiz 1 10 pts, 10 minutes

Name: _____ Jan 18, 2024

Solution:

1 (10 pts)(Source: 1.4.21-22) . From the given points obtain the equations

$$(-1,8) \longrightarrow Cb^{-1} = 8$$
$$(1,18) \longrightarrow Cb^{1} = 18$$

Solve for C in the first to obtain C = 8b. Substitute this into the second and solve for b:

$$8b^2 = 18$$

 $b^2 = \frac{18}{8} = \frac{9}{4}$

Since b > 0,

and

$$b = \sqrt{\frac{9}{4}} = \frac{3}{2}$$
$$= 8b = 8\frac{3}{2} = 12.$$

$$C = 80 = 8\frac{1}{2} = 1$$

That is, $f(x) = 12 \left(\frac{3}{2}\right)^x$. Since f(0) = C = 12, the *y*-intercept is the point (0, 12).

(done)