MATH 120-04 (Kunkle), Quiz 3
10 pts, 10 minutes

Name:
Feb 8, 2024

1 (10 pts). The graphs of two functions, $s(x)$ and $t(x)$ appear in the figure below Sketch the graphs of $s^{\prime}(x)$ and $t^{\prime}(x)$ on the axes provided.

Solution:

1. (Source: 2.8.4-11) Here are the graphs of $s^{\prime}(x)$ and $t^{\prime}(x)$.

Necessary components of a correct solution:

At $x=/$ On the interval	where the graph of $s \ldots$	s^{\prime} is \ldots
$x=-1,1$	is horizontal	is zero.
$(-2,-1)$ and $(1,2)$	has negative slope,	negative.
$(-1,1)$ and $(2,5)$	has positive slope,	positive.

At $x=/$ On the interval	where the graph of $t \ldots$	t^{\prime} is \ldots
$x=-1$ and 1	approaches vertical,	blowing up.
$(-1,1)$	has positive slope,	positive.

In particular, $t^{\prime}(0)$ is not zero.
math 120-11 (Kunkle), Quiz 3
$10 \mathrm{pts}, 10$ minutes

Name:
Feb 8, 2024

1 (10 pts). Find the following:
a. $\quad f^{\prime}(x)$ if $f(x)=\frac{2}{\sqrt[3]{x}}+4^{2}$
b. $\frac{d y}{d x}$ if $y=\frac{x e^{x}}{2 x-e^{x}}$. (You needn't simplify your answer to this.)
c. The equation of the line tangent to the curve $y=3 x^{2}-4 x$ at $x=1$.

Solution:

1a.(Source: 3.1.3,19) Note that $4^{2}=16$ is a constant and that $-\frac{1}{3}-1=-\frac{4}{3}$. Since $f(x)=2 x^{-1 / 3}+16$, its derivative $f^{\prime}(x)=-\frac{2}{3} x^{-4 / 3}$.

1b. (Source: 3.2.23) When more than one rule comes into play, the last operation in the function determines the first rule to use. Ultimately, $y=\frac{x e^{x}}{2 x-e^{x}}$ is a quotient, so, first of all, the quotient rule tells us

$$
\frac{d y}{d x}=\frac{\left(x e^{x}\right)^{\prime}\left(2 x-e^{x}\right)-\left(2 x-e^{x}\right)^{\prime}\left(x e^{x}\right)}{\left(2 x-e^{x}\right)^{2}} .
$$

Within the quotient rule, we'll have to use the product rule to differentiant $x e^{x}$:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left.\left(x^{\prime} e^{x}+\left(e^{x}\right)^{\prime} x\right)\right)\left(2 x-e^{x}\right)-\left(2 x-e^{x}\right)^{\prime}\left(x e^{x}\right)}{\left(2 x-e^{x}\right)^{2}} \\
& =\frac{\left(e^{x}+x e^{x}\right)\left(2 x-e^{x}\right)-\left(2-e^{x}\right)\left(x e^{x}\right)}{\left(2 x-e^{x}\right)^{2}}
\end{aligned}
$$

Note that $\left(2 x-e^{x}\right)$ is not a common factor.
You were not required to simplify your answer to part b, but if you did, the result is

$$
\frac{d y}{d x}=\frac{e^{x}\left(2 x^{2}-e^{x}\right)}{\left(2 x-e^{x}\right)^{2}}
$$

1c. (Source: 3.1.33) Calculate $y=3 x^{2}-4 x$ and $\frac{d y}{d x}=3 \cdot 2 x-4 \cdot 1 x^{0}=6 x-4$ at $x=1$ to find that curve passes through the point $(1,-1)$ with slope 2 . The tangent line is

$$
y+1=2(x-1)
$$

To practice arithmetic with fractions and other basic algebra skills, see http://kunklet.people.cofc.edu/MATH111/111BootCamp.pdf

