MATH 120-04 (Kunkle), Quiz 6
10 pts, 10 minutes

Name:
Mar 14, 2024

1 (10 pts). Find the absolute maximum and minimum values of the function $u(x)=4 x+\frac{1}{x}$ on the interval $\left[\frac{1}{8}, 1\right]$.
Solution:
1.(Source: 4.1.53) The critical points of $u(x)=4 x+\frac{1}{x}$ are those x-values where $u(x)$ exists and $u^{\prime}(x)=4-x^{-2}$ is either zero or undefined. Both u and u^{\prime} are defined at all real numbers except zero, so the only critical points are where $u^{\prime}(x)=0$:

$$
0=4-x^{-2} \quad \Longrightarrow \quad x^{-2}=4 \quad \Longrightarrow \quad x^{2}=\frac{1}{4}
$$

Now take \pm the square root of both sides:

$$
x= \pm \sqrt{\frac{1}{4}}= \pm \frac{1}{2}
$$

The absolute maximum and minimum values of the $u(x)$ on $\left[\frac{1}{8}, 1\right]$ can occur only at the endpoints or at critical points in the interval, so we only need to compute and compare the values of $u(x)$ at $\frac{1}{8}, \frac{1}{2}$, and 1 :

x	$4 x+\frac{1}{x}$
$\frac{1}{8}$	$4 \cdot \frac{1}{8}+\frac{1}{1 / 8}=\frac{1}{2}+8=8.5$
$\frac{1}{2}$	$4 \cdot \frac{1}{2}+\frac{1}{1 / 2}=2+2=4$
1	$4 \cdot 1+\frac{1}{1}=5$

Therefore the absolute maximum of u on $\left[\frac{1}{8}, 1\right]$ is 8.5 and the absolute minimum is 4 .

