MATH 120–04,11 (Kunkle), Quiz 7 10 pts, 10 minutes

Name: _____ Mar 28, 2024

1. Let $\tau(x) = \frac{1}{1 + e^x}$. Find the following. a (1 pts). The domain of τ . b (2 pts). The horizontal asymptotes of the graph of τ . c (3 pts). The interval(s) on which τ is decreasing. d (4 pts). The interval(s) on which the graph of τ is concave down.

Solution:

1a.(Source: 4.5.43) e^x is always positive, so $e^x + 1$ is never zero. The domain of τ is $(-\infty, \infty)$. 1b. $\lim_{x \to -\infty} \frac{1}{1 + e^x} = \frac{1}{1 + 0} = 1$, and $\lim_{x \to \infty} \frac{1}{1 + e^x} = \frac{1}{\infty} = 0$, so y = 1 and y = 0 are horizontal asymptotes.

1c. Rewrite $\tau(x)$ as $(1+e^x)^{-1}$. Then by the chain rule, $\tau'(x) = -(1+e^x)^{-2}e^x = \frac{-e^x}{(1+e^x)^2}$. e^x is always positive, so $\tau'(x)$ is always negative. Consequently, τ is decreasing on $(-\infty, \infty)$. 1d. Calculate τ'' by the quotient rule and factor:

$$\tau'' = \left(\frac{-e^x}{(1+e^x)^2}\right)' = \frac{-e^x(1+e^x)^2 - (-e^x)2(1+e^x)e^x}{(1+e^x)^4}$$
$$= \frac{e^x(1+e^x)\left((-(1+e^x)+2e^x)\right)}{(1+e^x)^4} = \frac{e^x(e^x-1)}{(1+e^x)^3}$$

The factor $\frac{e^x}{(1+e^x)^3}$ is always positive, and the factor $(e^x - 1)$ is positive if and only if $e^x > 1$ if and only if x > 0. Consequently, the graph of τ is concave down on $(-\infty, 0)$. (done)

The asymptotes, monotonicity, and concavity of $\tau(x)$ show up nicely in this graph: https://www.desmos.com/calculator/riilq6vfcn