MATH 120-04,11 (Kunkle), Quiz 7
$10 \mathrm{pts}, 10$ minutes

Name:
Mar 28, 2024

1. Let $\tau(x)=\frac{1}{1+e^{x}}$. Find the following.
a (1 pts). The domain of τ.
$\mathrm{b}(2 \mathrm{pts})$. The horizontal asymptotes of the graph of τ.
c (3 pts). The interval(s) on which τ is decreasing.
$\mathrm{d}(4 \mathrm{pts})$. The interval(s) on which the graph of τ is concave down.

Solution:

1a.(Source: 4.5.43) $\quad e^{x}$ is always positive, so $e^{x}+1$ is never zero. The domain of τ is $(-\infty, \infty)$.
1b. $\lim _{x \rightarrow-\infty} \frac{1}{1+e^{x}}=\frac{1}{1+0}=1$, and $\lim _{x \rightarrow \infty} \frac{1}{1+e^{x}}=" \frac{1}{\infty} "=0$, so $y=1$ and $y=0$ are horizontal asymptotes.
1c. Rewrite $\tau(x)$ as $\left(1+e^{x}\right)^{-1}$. Then by the chain rule, $\tau^{\prime}(x)=-\left(1+e^{x}\right)^{-2} e^{x}=\frac{-e^{x}}{\left(1+e^{x}\right)^{2}}$. e^{x} is always positive, so $\tau^{\prime}(x)$ is always negative. Consequently, τ is decreasing on $(-\infty, \infty)$.
1 d . Calculate $\tau^{\prime \prime}$ by the quotient rule and factor:

$$
\begin{aligned}
\tau^{\prime \prime}=\left(\frac{-e^{x}}{\left(1+e^{x}\right)^{2}}\right)^{\prime} & =\frac{-e^{x}\left(1+e^{x}\right)^{2}-\left(-e^{x}\right) 2\left(1+e^{x}\right) e^{x}}{\left(1+e^{x}\right)^{4}} \\
& =\frac{e^{x}\left(1+e^{x}\right)\left(\left(-\left(1+e^{x}\right)+2 e^{x}\right)\right.}{\left(1+e^{x}\right)^{4}}=\frac{e^{x}\left(e^{x}-1\right)}{\left(1+e^{x}\right)^{3}}
\end{aligned}
$$

The factor $\frac{e^{x}}{\left(1+e^{x}\right)^{3}}$ is always positive, and the factor $\left(e^{x}-1\right)$ is positive if and only if $e^{x}>1$ if and only if $x>0$. Consequently, the graph of τ is concave down on $(-\infty, 0)$.

The asymptotes, monotonicity, and concavity of $\tau(x)$ show up nicely in this graph: https://www.desmos.com/calculator/riilq6vfcn

