More problems for section 2.4 of Calculus, Early Transcendentals by James Stewart, 8e.

1. Write an $\varepsilon-\delta$ proof of the following limits.
a. $\quad \lim _{x \rightarrow 4} 2 x-3=5$
b. $\lim _{x \rightarrow-2} 5 x+4=-6$
c. $\lim _{x \rightarrow 1} 6-3 x=3$
d. $\lim _{x \rightarrow-2} 3-4 x=11$
e. $\lim _{x \rightarrow 1} \frac{(x-1)(3 x+5)}{x-1}=8$
f. $\quad \lim _{x \rightarrow 1} \frac{(x+2)(2-5 x)}{x+2}=12$
g. $\lim _{x \rightarrow-3} \frac{10 x^{2}+33 x+9}{x+3}=-27$
h. $\lim _{x \rightarrow 0} \frac{x-6 x^{2}}{x}=1$

Answers
1a. Suppose $\varepsilon>0$. Choose $\delta=\frac{\varepsilon}{2}$. Then $|(2 x-3)-5|=|2 x-8|=2|x-4|<2 \delta=\varepsilon$ whenever $0<|x-4|<\delta$, as desired.
1b. Suppose $\varepsilon>0$. Choose $\delta=\frac{\varepsilon}{5}$. Then $|(5 x+4)-(-6)|=|5 x+10|=5|x+2|<5 \delta=\varepsilon$ whenever $0<|x+2|<\delta$, as desired.
1c. Suppose $\varepsilon>0$. Choose $\delta=\frac{\varepsilon}{3}$. Then $|(6-3 x)-3|=|-3 x+3|=3|x-1|<3 \delta=\varepsilon$ whenever $0<|x-1|<\delta$, as desired.
1d. Suppose $\varepsilon>0$. Choose $\delta=\frac{\varepsilon}{4}$. Then $|(3-4 x)-11|=|-4 x-8|=4|x+2|<4 \delta=\varepsilon$ whenever $0<|x+2|<\delta$, as desired.
1e. Suppose $\varepsilon>0$. Choose $\delta=\frac{\varepsilon}{3}$. Then $\left|\frac{(x-1)(3 x+5)}{x-1}-8\right|=|(3 x+5)-8|=|3 x-3|=3|x-1|<3 \delta=\varepsilon$ whenever $0<|x-1|<\delta$, as desired.

1f. Suppose $\varepsilon>0$. Choose $\delta=\frac{\varepsilon}{5}$. Then $\left|\frac{(x+2)(2-5 x)}{x+2}-12\right|=|(2-5 x)-12|=|-5 x-10|=5|x+2|<5 \delta=\varepsilon$ whenever $0<|x+2|<\delta$, as desired.

1 g. Suppose $\varepsilon>0$. Choose $\delta=\frac{\varepsilon}{10}$. Then $\left.\left|\frac{10 x^{2}+33 x+9}{x+3}-(-27)\right|=\left|\frac{(10 x+3)(x+3)}{x+3}+27\right|=(10 x+3)+27|=|10 x+30|=10| x+3 \right\rvert\,<$ $10 \delta=\varepsilon$ whenever $0<|x+3|<\delta$, as desired.

1h. Suppose $\varepsilon>0$. Choose $\delta=\frac{\varepsilon}{6}$. Then $\left|\frac{x-6 x^{2}}{x}-1\right|=\left|\frac{x(1-6 x)}{x}-1\right|=|(1-6 x)-1|=|-6 x|=6|x|<6 \delta=\varepsilon$ whenever $0<|x-0|<\delta$, as desired.

