MATH 203-01\&03 (Kunkle), Exam 1
100 pts, 50 minutes

Name:
Feb 8, 2023

No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.
Solve or find the solution always means to find the general solution, if it exists.
$1(10 \mathrm{pts})$. Calculate the product, if it exists:
a. $\left[\begin{array}{cccc}1 & 2 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 1 & -2 & 0 & 1\end{array}\right]\left[\begin{array}{c}1 \\ -3 \\ 2\end{array}\right]$
b. $\left[\begin{array}{cccc}1 & 2 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 1 & -2 & 0 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 3\end{array}\right]$
$2(25 \mathrm{pts})$. Let $V=\left\{\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 6\end{array}\right],\left[\begin{array}{c}-1 \\ -2 \\ 2\end{array}\right]\right\}$ and $\mathbf{b}=\left[\begin{array}{c}8 \\ 6 \\ 10\end{array}\right]$.
a. Express \mathbf{b} as a linear combination of the elements of V or explain why this is not possible.
b. Is every vector in \mathbb{R}^{3} in the span of V ? Why or why not?
$3(18 \mathrm{pts})$. Let T be the linear transformation from \mathbb{R}^{3} into \mathbb{R}^{3} given by the rule

$$
T(\mathbf{x})=\left[\begin{array}{ccc}
5 & 11 & -11 \\
1 & 2 & -3 \\
-1 & -1 & 7
\end{array}\right] \mathbf{x}
$$

Determine whether $T(\mathbf{x})=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$ for some \mathbf{x}, and, if so, if \mathbf{x} is unique.
$4(35 \mathrm{pts})$. Let $D=\left[\begin{array}{cccc}1 & -1 & 2 & 2 \\ 0 & -2 & 0 & 2 \\ 1 & 2 & 2 & -1\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{c}-2 \\ -6 \\ 7\end{array}\right]$.
a. Find the parametric vector form of the general solution to $D \mathbf{x}=\mathbf{u}$.
b. State the general solution to $D \mathbf{x}=\mathbf{0}$.
c. Are the columns of D linearly independent? Why or why not?
$5(12 \mathrm{pts})$. Answer one of the following parts. Clearly indicate which part you're answering. a. Suppose that there's a vector \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has exactly one solution. Explain why $A \mathbf{x}=\mathbf{0}$ has exactly one solution.
b. Suppose C is an $m \times n$ matrix with $m>n$. Explain why there must be a vecor \mathbf{d} in \mathbb{R}^{m} for which $C \mathbf{x}=\mathbf{d}$ has no solutions.
$1 \mathrm{a}(4 \mathrm{pts})$.(Source: $1.4 .1,3)$ Does not exist. The matrix-vector product $A \mathrm{x}$ requires the number of columns of A equal the number of rows of \mathbf{x}.
1 b (6 pts).

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 0 & 1 & -1 \\
1 & -2 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-2 \\
3
\end{array}\right]=1\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+0\left[\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right]-2\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+3\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-5 \\
4
\end{array}\right]
$$

$2 \mathrm{a}(21 \mathrm{pts})$.(Source: 1.3.11-12) To solve the linear system, augment and row reduce.

row operation	result			
initial matrix	0	2	-1	8
	0	-2	6	
	-2	6	2	10
	$\mathbf{r}_{1} \rightleftarrows \mathbf{r}_{2}$	1	0	-2
	0	2	-1	8
	-2	6	2	10
	1	0	-2	6
$\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}+2 \mathbf{r}_{1}$	0	2	-1	8
0	6	-2	22	

row operation	result
$\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}-3 \mathbf{r}_{2}$	$\begin{array}{cccc}1 & 0 & -2 & 6 \\ 0 & 2 & -1 & 8 \\ 0 & 0 & 1 & -2\end{array}$
$\begin{aligned} \mathbf{r}_{2} & \leftarrow \mathbf{r}_{2}+\mathbf{r}_{3} \\ \mathbf{r}_{1} & \leftarrow \mathbf{r}_{1}+2 \mathbf{r}_{3} \end{aligned}$	$\begin{array}{cccc}1 & 0 & 0 & 2 \\ 0 & 2 & 0 & 6 \\ 0 & 0 & 1 & -2\end{array}$
$\mathbf{r}_{2} \leftarrow \frac{1}{2} \mathbf{r}_{2}$	$\begin{array}{cccc}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2\end{array}$

Conclusion: \mathbf{b} is (uniquely) expressible as a linear combination of the vectors in V :

$$
\left[\begin{array}{c}
8 \\
6 \\
10
\end{array}\right]=2\left[\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right]+3\left[\begin{array}{l}
2 \\
0 \\
6
\end{array}\right]-2\left[\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right]
$$

$2 \mathrm{~b}(4 \mathrm{pts})$.(Source: $1 \cdot 4 \cdot 18-22) \quad$ Yes, V spans \mathbb{R}^{3} because the matrix

$$
\left[\begin{array}{ccc}
0 & 2 & -1 \\
1 & 0 & -2 \\
-2 & 6 & 2
\end{array}\right]
$$

has a pivot in every row (of its row echelon form).
$3(18 \mathrm{pts})$.(Source: $1.8 .3-7)$ To solve the linear system, augment and row reduce

row operation	result			
	5	11	-11	1
initial matrix	1	2	-3	0
	-1	-1	7	3
	1	2	-3	0
$\mathbf{r}_{1} \rightleftarrows \mathbf{r}_{2}$	5	11	-11	1
	-1	-1	7	3
$\mathbf{r}_{2} \leftarrow \mathbf{r}_{2}-5 \mathbf{r}_{1}$	1	2	-3	0
$\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}+\mathbf{r}_{1}$	0	1	4	1
0	1	4	3	
	$\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}-\mathbf{r}_{2}$	1	2	-3
0	1	4	1	

This system is inconsistent, since there's a pivot in the last column of the augmented matrix. There's no \mathbf{x} satisfying $T(\mathbf{x})=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$. (That is, $\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$ isn't in the range of T.) $4 \mathrm{a}(25 \mathrm{pts})$.(Source: $1.5,19,20$) Augment and row reduce to solve.

row operation	result
initial matrix	$\begin{array}{ccccc}1 & -1 & 2 & 2 & -2 \\ 0 & -2 & 0 & 2 & -6 \\ 1 & 2 & 2 & -1 & 7\end{array}$
$\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}-\mathbf{r}_{1}$	$\begin{array}{ccccc}1 & -1 & 2 & 2 & -2 \\ 0 & -2 & 0 & 2 & -6 \\ 0 & 3 & 0 & -3 & 9\end{array}$
$\mathbf{r}_{2} \leftarrow-\frac{1}{2} \mathbf{r}_{2}$	$\begin{array}{ccccc}1 & -1 & 2 & 2 & -2 \\ 0 & 1 & 0 & -1 & 3 \\ 0 & 3 & 0 & -3 & 9\end{array}$
$\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}-3 \mathbf{r}_{2}$	$\begin{array}{ccccc} 1 & -1 & 2 & 2 & -2 \\ 0 & 1 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$
$\mathbf{r}_{1} \leftarrow \mathbf{r}_{1}+\mathbf{r}_{2}$	

Solution in ... parametric form:
parametric vector form (required):

$$
\begin{aligned}
& x_{1}=1-2 x_{3}-x_{4} \\
& x_{2}=3+x_{4} \\
& x_{3}=\text { free } \\
& x_{4}=\text { free }
\end{aligned}
$$

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
3 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]
$$

4b(5 pts).(Source: $1.5 .5,6$) The solution to the homogeneous system in ...
parametric form: parametric vector form:

$$
\begin{aligned}
& x_{1}=-2 x_{3}-x_{4} \\
& x_{2}=x_{4} \\
& x_{3}=\text { free } \\
& x_{4}=\text { free }
\end{aligned}
$$

$$
\mathbf{x}=s\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]
$$

Either form was acceptable in 4 b .
$4 \mathrm{c}(5 \mathrm{pts})$.(Source: $1.7 .5-8$) The columns of D are not linearly independent since D doesn't have a pivot in every column.

5 (12 pts).
a.(Source: 1.5.38) Assume that $A \mathbf{x}=\mathbf{b}$ has exactly one solution for some vector \mathbf{b}. It's impossible that A contains any free variables, since this would cause the consistent system $A \mathbf{x}=\mathbf{b}$ to have infinitely many solutions.
A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has the trivial solution $\mathbf{x}=\mathbf{0}$ and has infinitely many solutions iff A has free variables. Since A has none, $A \mathbf{x}=\mathbf{0}$ must have exactly one solution.
a. (Alternate solution) The homogeneous system $A \mathbf{x}=\mathbf{0}$ always has the solution $\mathbf{x}=\mathbf{0}$ Suppose \mathbf{p} is the unique vector solving $A \mathbf{x}=\mathbf{b}$ and that \mathbf{u} is any solution to $A \mathbf{x}=\mathbf{0}$. Then $\mathbf{p}+\mathbf{u}$ is a solution to $A \mathbf{x}=\mathbf{b}$, since $A(\mathbf{p}+\mathbf{u})=\mathbf{b}+\mathbf{0}=\mathbf{b}$. Since this system has only one solution, $\mathbf{p}+\mathbf{u}=\mathbf{p}$. Subtract \mathbf{p} from both sides to obtain $\mathbf{u}=\mathbf{0}$. Consequently, every solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{0}$, and so this homogeneous system has exactly one solution.
b.(Source: 1.4.41) Assume that C is an $m \times n$ matrix with $m>n$. Any matrix has at most one pivot per column, so C has at most n pivots. Since this is less than the number of its rows, C cannot have a pivot in each row, and therefore cannot span \mathbb{R}^{m}. That is, there's at least one $\mathbf{d} \in \mathbb{R}^{m}$ for which $C \mathbf{x}=\mathbf{d}$ has no solution.

