MATH 203-01\&03 (Kunkle), Exam 2
100 pts, 50 minutes

Name:
Mar 17, 2023

No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.
Solve or find the solution always means to find the general solution, if it exists.
$1(16 \mathrm{pts})$. Suppose $A=\left[\begin{array}{cc}1 & 2 \\ -3 & 1\end{array}\right], \quad B=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 2 & 0\end{array}\right]$, and $C=\left[\begin{array}{cc}2 & 4 \\ 1 & -3 \\ 3 & -5\end{array}\right]$.
Calculate each of the following, if it exists.
a. $A B$
b. $B A$
c. $A C$
d. $C^{T}+B$
$2(10 \mathrm{pts})$. Suppose E is a square matrix whose first and third columns are the same. Could E be invertible? Why or why not?
$3(6 \mathrm{pts})$. Suppose $G^{-1}=\left[\begin{array}{cc}1 & 2 \\ -3 & 1\end{array}\right]$. Find the solution \mathbf{x} to $G \mathbf{x}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, if it exists.
$4(17 \mathrm{pts})$. Find the inverse of $F=\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & 6 \\ -1 & 1 & -4\end{array}\right]$.
$5 \mathrm{a}(17 \mathrm{pts})$. Find the determinant of $M=\left[\begin{array}{cccc}1 & -1 & 9 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & -1 & 2 \\ -2 & 1 & 0 & 3\end{array}\right]$.
$5 \mathrm{~b}(4 \mathrm{pts})$. What must be the determinant of M^{3} ?
$6(15 \mathrm{pts})$. Choose one of the following sets and prove whether or it is a subspace of \mathbb{R}^{3}.
a. $H=\left\{\left.\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \right\rvert\, a-2 b+3 c=0\right\}$
b. $J=\left\{\left.\left[\begin{array}{c}a+b \\ -2 b \\ 3 a\end{array}\right] \right\rvert\, a, b\right.$ real $\}$
$7(15 \mathrm{pts})$. Answer one of the following parts. Clearly indicate which part you're answering. a. Let $T: \mathbb{P} \rightarrow \mathbb{R}: \mathbf{p}(t) \mapsto \mathbf{p}(1)$. That is, T is the transformation from \mathbb{P} to \mathbb{R} defined by $T(\mathbf{p})=\mathbf{p}(1)$. Determine whether T is linear and then prove your conclusion. Include in your solution the definition of it means for a transformation from one vector space to another to be linear.
b. Determine whether the polynomials $\{2 t, 1-t, 1+t\}$ are linearly independent and then prove your conclusion. Include in your solution the definition of what it means for three vectors in a vector space to be linearly independent.

1 (16 pts).(Source: 2.1.1-2) To multiply two matrices, the number of columns of the first must equal the number of rows of the second. The product of an $m \times n$ and an $n \times p$ matrix is an $m \times p$ matrix.
a. $A B=\left[\begin{array}{cc}1 & 2 \\ -3 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 2 & 0\end{array}\right]=\left[\begin{array}{ccc}1 \cdot 1+2(-1) & 1 \cdot 2+2 \cdot 2 & 1 \cdot 3+2 \cdot 0 \\ -3 \cdot 1+1(-1) & -3 \cdot 2+1 \cdot 2 & -3 \cdot 3+1 \cdot 0\end{array}\right]$

$$
=\left[\begin{array}{ccc}
-1 & 6 & 3 \\
-4 & -4 & -9
\end{array}\right]
$$

b. $B A$ does not exist. c. $A C$ does not exist.
d. $C^{T}+B=\left[\begin{array}{ccc}2 & 1 & 3 \\ 4 & -3 & -5\end{array}\right]+\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 2 & 0\end{array}\right]=\left[\begin{array}{ccc}3 & 3 & 6 \\ 3 & -1 & -5\end{array}\right]$.
$2(10 \mathrm{pts})$.(Source: 2.3.23) Solution one: Since the first and third columns are identical, the columns of E are linearly dependent. By the invertible matrix theorem, E cannot be invertible.

Solution two: The IMT states that for E to be invertible, it must have a pivot in every column. Remember that a "pivot" is by definition the lead entry of a nonzero row in a matrix in row echelon form, and the "lead entry" of a row is its leftmost nonzero entry, if there is one.
If the first column is zero then E has no pivot in column one and can't be invertible.
If the first column is nonzero, then it can be row-reduced to \mathbf{e}_{1}. But the row operations that reduce column 1 to \mathbf{e}_{1} must also reduce column 3 to \mathbf{e}_{1} :

$$
E \sim\left[\begin{array}{ccccc}
1 & \# & 1 & \# & \cdots \\
0 & \# & 0 & \# & \cdots \\
0 & \# & 0 & \# & \cdots \\
& \vdots & & & \\
0 & \# & 0 & \# & \cdots
\end{array}\right]
$$

Consequently, column 3 has no pivot, since its only nonzero entry is not the lead entry of its row. Since E has a column with no pivot, it is not invertible.
$3(6 \mathrm{pts})$.(Source: $2.2 \cdot 7-8$) The unique solution is

$$
\mathbf{x}=G^{-1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-3 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 \cdot 1+2(-1) \\
-3 \cdot 1+1(-1)
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-4
\end{array}\right]
$$

4(17 pts).(Source: 2.2.41-42, 3.3.11-16)
Solution one: Augment F with the identity and row-reduce.

| row operation | result | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (beginning matrix) | 1 | 0 | 3 | 1 | 0 | 0 |
| 2 | 1 | 6 | 0 | 1 | 0 | |
| -1 | 1 | -4 | 0 | 0 | 1 | |
| $\mathbf{r}_{2} \leftarrow \mathbf{r}_{2}-2 \mathbf{r}_{1}$ | 1 | 0 | 3 | 1 | 0 | 0 |
| $\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}+\mathbf{r}_{1}$ | 0 | 1 | 0 | -2 | 1 | 0 |
| 0 | 1 | -1 | 1 | 0 | 1 | |
| | 1 | 0 | 3 | 1 | 0 | 0 |
| $\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}-\mathbf{r}_{2}$ | 0 | 1 | 0 | -2 | 1 | 0 |
| | 0 | 0 | -1 | 3 | -1 | 1 |
| | 1 | 0 | 0 | 10 | -3 | 3 |
| $\mathbf{r}_{3} \leftarrow-\mathbf{r}_{3}$ | 0 | 1 | 0 | -2 | 1 | 0 |
| $\mathbf{r}_{1} \leftarrow \mathbf{r}_{1}-3 \mathbf{r}_{3}$ | 0 | 0 | 1 | -3 | 1 | -1 |

Therefore $F^{-1}=\left[\begin{array}{ccc}10 & -3 & 3 \\ -2 & 1 & 0 \\ -3 & 1 & -1\end{array}\right]$.
Solution two: The matrix of cofactors of F are

$$
\left[\begin{array}{ccc}
\left|\begin{array}{cc}
1 & 6 \\
1 & -4
\end{array}\right| & -\left|\begin{array}{cc}
2 & 6 \\
-1 & -4
\end{array}\right| & \left|\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right| \\
-\left|\begin{array}{cc}
0 & 3 \\
1 & -4
\end{array}\right| & \left|\begin{array}{cc}
1 & 3 \\
-1 & -4
\end{array}\right| & -\left|\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right| \\
\left|\begin{array}{ll}
0 & 3 \\
1 & 6
\end{array}\right| & -\left|\begin{array}{cc}
1 & 3 \\
2 & 6
\end{array}\right| & \left|\begin{array}{cc}
1 & 0 \\
2 & 1
\end{array}\right|
\end{array}\right]=\left[\begin{array}{ccc}
-10 & 2 & 3 \\
3 & -1 & -1 \\
-3 & 0 & 1
\end{array}\right] .
$$

Use these cofactors to compute $\operatorname{det} F$, For instance, by expanding along the bottom row of F, we find $\operatorname{det} F=\left[\begin{array}{ccc}-1 & 1 & -4\end{array}\right]\left[\begin{array}{lll}-3 & 0 & 1\end{array}\right]^{T}=(-1)(-3)+(1)(0)+(-4)(1)=-1$. Therefore, by Cramer's rule,

$$
F^{-1}=\frac{1}{\operatorname{det} F} \operatorname{adj} F=\frac{1}{-1}\left[\begin{array}{ccc}
-10 & 2 & 3 \\
3 & -1 & -1 \\
-3 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{ccc}
10 & -3 & 3 \\
-2 & 1 & 0 \\
-3 & 1 & -1
\end{array}\right]
$$

$5 \mathrm{a}(17 \mathrm{pts})$.(Source: 3.1.9-10, 3.2.7-9) Solution one: by cofactor expansion along the second row of M, and then along the first row of $M_{2,3}$ (the submatrix obtained form M by deleting row 2 , column 3)

$$
\begin{aligned}
|M|=-2\left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 2 \\
-2 & 1 & 3
\end{array}\right| & =-2\left(1\left|\begin{array}{cc}
1 & 2 \\
1 & 3
\end{array}\right|-(-1)\left|\begin{array}{cc}
0 & 2 \\
-2 & 3
\end{array}\right|\right) \\
& =-2(1(1 \cdot 3-2 \cdot 1)-(-1)(0 \cdot 3-2(-2))) \\
& =-2(1+4)=-10
\end{aligned}
$$

Soution two: by row reduction,

$$
\begin{aligned}
& \left|\begin{array}{cccc}
1 & -1 & 9 & 0 \\
0 & 0 & 2 & 0 \\
0 & 1 & -1 & 2 \\
-2 & 1 & 0 & 3
\end{array}\right| \stackrel{1}{=}\left|\begin{array}{cccc}
1 & -1 & 9 & 0 \\
0 & 0 & 2 & 0 \\
0 & 1 & -1 & 2 \\
0 & -1 & 18 & 3
\end{array}\right| \stackrel{2}{=}-\left|\begin{array}{cccc}
1 & -1 & 9 & 0 \\
0 & 1 & -1 & 2 \\
0 & 0 & 2 & 0 \\
0 & -1 & 18 & 3
\end{array}\right| \\
& \stackrel{3}{=}-2\left|\begin{array}{cccc}
1 & -1 & 9 & 0 \\
0 & 1 & -1 & 2 \\
0 & 0 & 1 & 0 \\
0 & -1 & 18 & 3
\end{array}\right| \stackrel{1}{=}-2\left|\begin{array}{cccc}
1 & -1 & 9 & 0 \\
0 & 1 & -1 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 17 & 5
\end{array}\right| \stackrel{1}{=}-2\left|\begin{array}{cccc}
1 & -1 & 9 & 0 \\
0 & 1 & -1 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 5
\end{array}\right| \\
& \stackrel{4}{=}-2 \cdot 5=-10
\end{aligned}
$$

Notes:
${ }^{1}$ Row replacements; no change to determinant.
${ }^{2}$ Row interchange; determinant changes by a sign.
${ }^{3}$ Factor 2 out of row 3.
${ }^{4}$ The determinant of a triangular matrix equals the product of its main diagonal.
$5 \mathrm{~b}(4 \mathrm{pts})$.(Source: 3.2.35) Because the determinant of a product is the product of the determinants, $\left|M^{3}\right|=|M M M|=|M||M||M|=|M|^{3}=(-10)^{3}=-1000$.
$6(15 \mathrm{pts})$.
a.(Source: 4.2.9-10) Solution one: H is a subspace, since it equals the null space of the 1×3 matrix $\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]$.
Solution two: $\mathbf{0} \in H$, since $0-2 \cdot 0+3 \cdot 0=0$.
Suppose $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ and $\left[\begin{array}{l}a^{\prime} \\ b^{\prime} \\ c^{\prime}\end{array}\right]$ are in H, meaning $a-2 b+3 c=0$ and $a^{\prime}-2 b^{\prime}+3 c^{\prime}=0$. Then their sum, $\left[\begin{array}{l}a+a^{\prime} \\ b+b^{\prime} \\ c+c^{\prime}\end{array}\right]$ is also in H, since $\left(a+a^{\prime}\right)-2\left(b+b^{\prime}\right)+3\left(c+c^{\prime}\right)=a+a^{\prime}-2 b-2 b^{\prime}+3 c+3 c^{\prime}=$ $(a-2 b+3 c)+\left(a^{\prime}-2 b^{\prime}+3 c^{\prime}\right)=0+0=0$.
Finally, if $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is in H, meaning $a-2 b+3 c=0$, and k is any scalar, the $k\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}k a \\ k b \\ k c\end{array}\right]$
is in H, because $k a-2 k b+3 k c=k(a-2 b+3 c)=k \cdot 0=0$.
Since H containts $\mathbf{0}$ and is closed under vector addition and scalar multiplication, H is a subspace.
b.(Source: 4.1.11-12,17-18, 4.2.13-14) Solution one: J is a subspace since it equals
$\left\{\left.a\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]+b\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right] \right\rvert\, a, b\right.$ real $\}$, the span of $\left\{\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right]\right\}$.
Solution two: when $a=b=0$, the vector $\left[\begin{array}{c}a+b \\ -2 b \\ 3 a\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \in J$.
For any two vectors $\left[\begin{array}{c}a+b \\ -2 b \\ 3 a\end{array}\right]$ and $\left[\begin{array}{c}a^{\prime}+b^{\prime} \\ -2 b^{\prime} \\ 3 a^{\prime}\end{array}\right]$ in J, their sum $\left[\begin{array}{c}a+b+a^{\prime}+b^{\prime} \\ -2 b-2 b^{\prime} \\ 3 a+3 a^{\prime}\end{array}\right]$
$=\left[\begin{array}{c}\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \\ -2\left(b+b^{\prime}\right) \\ 3\left(a+a^{\prime}\right)\end{array}\right]$ is in J (since $a+a^{\prime}$ and $b+b^{\prime}$ are real numbers).
Finally, if $\left[\begin{array}{c}a+b \\ -2 b \\ 3 a\end{array}\right]$ is any element in J and c is a scalar, then $c\left[\begin{array}{c}a+b \\ -2 b \\ 3 a\end{array}\right]=\left[\begin{array}{c}c(a+b) \\ c(-2 b) \\ c(3 a)\end{array}\right]=$
$\left[\begin{array}{c}c a+c b \\ -2 c b \\ 3 c a\end{array}\right]$ is in J (since $c a$ and $c b$ are real).
Since J containts $\mathbf{0}$ and is closed under vector addition and scalar multiplication, J is a subspace.

7 (15 pts).
a.(Source: 4.2.43) A transformation $T: V \rightarrow W$ is linear if, for all \mathbf{u} and \mathbf{v} in V and all $c \in \mathbb{R}$,

$$
\begin{aligned}
T(\mathbf{u}+\mathbf{v}) & =T(\mathbf{u})+T(\mathbf{v}) \\
T(c \mathbf{u}) & =c T(\mathbf{u})
\end{aligned}
$$

T is this case is linear, since for any two polynomials \mathbf{p} and \mathbf{q} and for any scalar c,

$$
\begin{aligned}
T(\mathbf{p}+\mathbf{q}) & =(\mathbf{p}+\mathbf{q})(1)=\mathbf{p}(1)+\mathbf{q}(1)=T(\mathbf{p})+T(\mathbf{q}) \\
T(c \mathbf{p}) & =(c \mathbf{p})(1)=c(\mathbf{p}(1))=c T(\mathbf{p})
\end{aligned}
$$

b.(Source: 4.3.44) Three vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} are linearly independent if the only scalars a, b, c for which $a \mathbf{u}+b \mathbf{v}+c \mathbf{w}=\mathbf{0}$ are $a=b=c=0$.
In this case, the polynomials $\{2 t, 1-t, 1+t\}$ are not linearly independent, since

$$
2 t+(1-t)-(1+t)=0
$$

for all t; that is, $1 \cdot 2 t+1 \cdot(1-t)+(-1)(1+t)$ equals the zero function $\mathbf{0}$.

