MATH 203-01\&03 (Kunkle), Exam 3
100 pts, 50 minutes

Name:
April 14, 2023

No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.
Solve or find the solution always means to find the general solution, if it exists.
$1(16 \mathrm{pts})$. The set $\mathcal{D}=\{1+t, 2+t\}$ is a basis for \mathbb{P}_{1}, the vector space of all polynomials of degree 1 or less.
a. Find the polynomial $\mathbf{p}(t)$ with the coordinates $[\mathbf{p}(t)]_{\mathcal{D}}=\left[\begin{array}{c}-2 \\ 2\end{array}\right]$
b. Find the coordinates $[\mathbf{q}(t)]_{\mathcal{D}}$ of the polynomial $\mathbf{q}(t)=t-3$.
$2 \mathrm{a}(4 \mathrm{pts})$. Is $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ an eigenvector of $A=\left[\begin{array}{cc}5 & -1 \\ 4 & 1\end{array}\right]$?
$2 \mathrm{~b}(8 \mathrm{pts})$. Find all eigenvalues of A.
$2 \mathrm{c}(10 \mathrm{pts})$. Find an invertible matrix P and a diagonal matrix D so that $A=P D P^{-1}$, or explain why none exist.
$3 \mathrm{a}(10 \mathrm{pts})$. Find all eigenvalues of $B=\left[\begin{array}{cc}5 & 6 \\ -3 & -1\end{array}\right]$.
$3 \mathrm{~b}(15 \mathrm{pts})$. Find an invertible matrix Q and a matrix C of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ so that $B=Q C Q^{-1}$, or explain why none exist.
4. Define the linear transformation $T: \mathbb{P}_{1} \rightarrow \mathbb{P}_{1}$ by $T(\mathbf{p}(t))=\mathbf{p}(-1)+\mathbf{p}(1) t$. $\mathrm{a}(4 \mathrm{pts})$. Compute $T(2-3 t)$. Is $2-3 t$ an eigenvector for T ?
$\mathrm{b}(12 \mathrm{pts})$. Find the matrix of T relative to the standard basis $\{1, t\}$ for \mathbb{P}_{1}.
$5(6 \mathrm{pts})$. Suppose the 5×7 matrix E has rank 3 . Find the following.
a. $\operatorname{dim} \operatorname{Col} E$
b. $\operatorname{dim} \operatorname{Col} E^{T}$
c. $\operatorname{dim} \operatorname{Nul} E$
d. $\operatorname{dim} \mathrm{Nul} E^{T}$
$6(15 \mathrm{pts})$. Answer one of the following parts. Clearly indicate which part you're answering. a. Show that if λ is an eigenvalue of an invertible matrix G, then λ^{-1} must be an eigenvalue of G^{-1}. Begin your solution with a definition of what it means for λ to be an eigenvalue of G.
b. Show that if the matrices U and W are similar, then $U+I$ and $W+I$ are also similar. Begin your solution with a definition of what it means for U and W to be similar.
$1 \mathrm{a}(4 \mathrm{pts})$.(Source: 4.4.1-4) $\quad \mathbf{p}(t)=-2(1+t)+2(2+t)$. If you wish, you could simplify $\mathbf{p}(t)$ to $-2-2 t+4+2 t=2$, that is, the constant function 2 .
$1 \mathrm{~b}(12$? pts).(Source: 4.4.13-14) The coordinates of $t-3$ are the numbers x and y for which

$$
\begin{equation*}
x(1+t)+y(2+t)=t-3 \tag{0.1}
\end{equation*}
$$

for all t. Evaluate at t-values to obtain a system of equations for x and y.

$$
\begin{aligned}
& t=-2 \\
& t=-1
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& -x+0 y=-5 \\
& 0 x+1 y=-4
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& x=5 \\
& y=-4
\end{aligned}
$$

That is, $[\mathbf{q}(t)]_{\mathcal{D}}=\left[\begin{array}{ll}5 & 4\end{array}\right]^{T}$.
You could also have found x and y by solving the system that results from equating the coefficients of 1 and t in (0.1):

$$
\begin{gathered}
1 \text {-coefficient } \\
t \text {-coefficient }
\end{gathered} \quad \Longrightarrow \quad \begin{aligned}
x+2 y & =-3 \\
x+y & =1
\end{aligned}
$$

$2 \mathrm{a}(4 \mathrm{pts})$.(Source: 5.1.3) $\left[\begin{array}{cc}5 & -1 \\ 4 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 6\end{array}\right]=3\left[\begin{array}{l}1 \\ 2\end{array}\right]$, so $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector.
$2 \mathrm{~b}(8 \mathrm{pts})$.(Source: 5.2 .1) The eigenvalues of A are the zeros of its characteristic polynomial:

$$
|A-\lambda I|=\left|\begin{array}{cc}
5-\lambda & -1 \\
4 & 1-\lambda
\end{array}\right|=(5-\lambda)(1-\lambda)-(-4)=\lambda^{2}-6 \lambda+9=(\lambda-3)^{2}
$$

so $\lambda=3$ is the only eigenvalue.
2c(10 pts).(Source: 5.3.9) The existence of such P and D means that A is diagonalizable. For that to occur, the eigenspace of A associated to $\lambda=3$ must have dimension 2 . But

$$
A-3 I=\left[\begin{array}{ll}
2 & -1 \\
4 & -2
\end{array}\right] \sim\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]
$$

has only one non-pivot column. The eigenspace has dimension 1 , so A is not diagonalizable.
$3 \mathrm{a}(10 \mathrm{pts})$.(Source: $5.5 .1-5)$ The characteristic polynomial of B is

$$
|B-\lambda I|=\left|\begin{array}{cc}
5-\lambda & 6 \\
-3 & -1-\lambda
\end{array}\right|=(5-\lambda)(-1-\lambda)-(-18)=\lambda^{2}-4 \lambda+13
$$

To find the zeros, either use the quadratic formula or complete the square, as shown here:

$$
\lambda^{2}-4 \lambda+4=-13+4 \Longrightarrow(\lambda-2)^{2}=-9 \Longrightarrow \lambda-2= \pm 3 i \Longrightarrow \lambda=2 \pm 3 i
$$

3 b (15 pts).(Source: 5.3.9) $\quad Q$ and C exist because B has non-real eigenvalues. If we use $\lambda=2-3 i$, the resulting C is the rotation-and-scaling matrix

$$
C=\left[\begin{array}{cc}
2 & -3 \\
3 & 2
\end{array}\right]
$$

To find Q, we must find a basis for the eigenspace of B corresponding to this eigenvalue.

$$
B-(2-3 i) I=\left[\begin{array}{cc}
5-(2-3 i) & 6 \\
-3 & -1-(2-3 i)
\end{array}\right]=\left[\begin{array}{cc}
3+3 i & 6 \\
-3 & -3+3 i
\end{array}\right]
$$

Since this matrix is singular, the first and second rows are linearly dependent, and so the the matrix is row equivalent to

$$
\left[\begin{array}{cc}
-3 & -3+3 i \\
0 & 0
\end{array}\right] \sim\left[\begin{array}{cc}
1 & 1-i \\
0 & 0
\end{array}\right]
$$

The vector $\left[\begin{array}{c}-1+i \\ 1\end{array}\right]$ is a basis for the eigenspace. Use its real and imaginary parts for the columns of Q :

$$
Q=\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]
$$

If you used the eigenvalue $\lambda=2+3 i$, the results would be

$$
C=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] \quad Q=\left[\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right]
$$

Both answers are correct, since

$$
\left[\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & -3 \\
3 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{cc}
5 & 6 \\
-3 & -1
\end{array}\right]
$$

4.(Source: 5.4.3-4,15-16)
$4 \mathrm{a}(4 \mathrm{pts})$. If $\mathbf{p}(t)=2-3 t$, then $\mathbf{p}(-1)=5$ and $\mathbf{p}(1)=-1$, and so $T(2-3 t)=5-t$. Since this is not a scalar multiple of $2-3 t, 2-3 t$ is not an eigenvector for T.
$4 \mathrm{~b}(12 \mathrm{pts})$. Letting \mathcal{B} stand for the standard basis $\{1, t\}$, the matrix M must satisfy this diagram:

That is, $M[\mathbf{p}]_{\mathcal{B}}=[T(\mathbf{p})]_{\mathcal{B}}$ for each \mathbf{p} in \mathbb{P}_{1}. Evaluate T at the basis elements:

$$
\begin{aligned}
T(1) & =1+1 t \\
T(t) & =-1+1 t
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \text { 1st column of } M=M \mathbf{e}_{1}=[T(1)]_{\mathcal{B}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& 2 \text { st column of } M=M \mathbf{e}_{2}=[T(2)]_{\mathcal{B}}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

and so

$$
M=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

$5(6 \mathrm{pts})$.(Source: $4.5 .33-38) \quad \operatorname{rank} E=\operatorname{dim} \operatorname{Col} E=\operatorname{dim} \operatorname{Row} E=\operatorname{dim} \operatorname{Col} E^{T}$, so a. $=\mathrm{b} .=3$. Since the rank of a matrix equals its number of pivot columns, and the dim Nul of a matrix equals its number of non-pivot columns, dim Nul equals the number of columns minus rank. Therefore, c. $=$ the number of columns of E minus $\operatorname{rank} E$, or $7-3=4$, and $\mathrm{d} .=$ the number of columns of E^{T} minus rank E^{T}, or $5-3=2$.
$6 \mathrm{a}(15 \mathrm{pts})$.(Source: 5.1 .33$) \quad \lambda$ is an eigenvalue of G if $G \mathbf{x}=\lambda \mathbf{x}$ for some non-zero vector \mathbf{x}. For such an \mathbf{x},

$$
G \mathbf{x}=\lambda \mathbf{x} \quad \Longrightarrow \quad G^{-1} G \mathbf{x}=G^{-1} \lambda \mathbf{x} \quad \Longrightarrow \quad I \mathbf{x}=\lambda G^{-1} \mathbf{x}
$$

Since a matrix is invertible iff non of its eigenvalues is 0 , we can divide both sides by λ to obtain

$$
\lambda^{-1} \quad \Longrightarrow \quad \mathbf{x}=G^{-1} \mathbf{x}
$$

proving that λ^{-1} is an eigenvalue of G^{-1}.
$6 \mathrm{~b}(15 \mathrm{pts})$.(Source: 5.2 .32) For two matrices U and W to be similar means that there's an invertible matrix P for which

$$
U=P W P^{-1}
$$

But then

$$
U+I=P W P^{-1}+P I P^{-1}=P(W+I) P^{-1}
$$

proving that $U+I$ and $W+I$ are similar.

