math 120-03 (Kunkle), Quiz 1
10 pts, 10 minutes

Name:
Jan 20, 2023

1 (10 pts). Find the general solution to the system expressed here in augmented matrix form:

$$
\left[\begin{array}{ccccc}
1 & 0 & -2 & 2 & 7 \\
1 & 1 & 0 & 2 & 3 \\
2 & 1 & -2 & 5 & 15
\end{array}\right]
$$

Solution:

(Source: 1.2.12)
Forward phase:
Subtract multiples of pivot row \mathbf{r}_{1} from rows beneath to produce zeros in column 1:

$\mathbf{r}_{2} \leftarrow \mathbf{r}_{2}-\mathbf{r}_{1}$	0 -2 2 7 0 1 2 0 -4 2 1 -2 5 15 $\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}-2 \mathbf{r}_{1}$ 1 0 -2 2 7 0 1 2 0				
	0	1	2	1	1

Subtract multiples of pivot row \mathbf{r}_{2} from row beneath to produce zeros in column 2:

$$
\begin{array}{|c|ccccc|}
\hline \mathbf{r}_{3} \leftarrow \mathbf{r}_{3}-\mathbf{r}_{2} & 1 & 0 & -2 & 0 & -3 \\
0 & 1 & 2 & 0 & -4 \\
0 & 0 & 0 & 1 & 5 \\
\hline
\end{array}
$$

End forward phase. Matrix is in row echelon form.
Backward phase:
Subtract multiples of pivot row \mathbf{r}_{3} from rows above to produce zeros in column 4:

| $\mathbf{r}_{1} \leftarrow \mathbf{r}_{1}-2 \mathbf{r}_{3}$ |
 0 -2 0 -3
 0 1 2 0 -4
 0 0 0 1 5${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

End backward phase. Matrix is in reduced row echelon form.
x_{3} is free, since its coefficients form a non-pivot column. General solution:

$$
\begin{aligned}
& x_{1}=-3+2 x_{3} \\
& x_{2}=-4-2 x_{3} \\
& x_{3} \text { is free } \\
& x_{4}=5
\end{aligned}
$$

