MATH 120–03 (Kunkle), Quiz 1 10 pts, 10 minutes

Name: _____ Jan 20, 2023

1 (10 pts). Find the general solution to the system expressed here in augmented matrix form:

1	0	-2	2	7
1	1	0	2	3
2	1	$-2 \\ 0 \\ -2$	5	15

Solution:

(Source: 1.2.12)

Forward phase:

Subtract multiples of pivot row \mathbf{r}_1 from rows beneath to produce zeros in column 1:

$\mathbf{r}_2 \leftarrow \mathbf{r}_2 - \mathbf{r}_1$	$egin{array}{c} 1 \\ 0 \\ 2 \end{array}$	0 1 1	$-2 \\ 2 \\ -2$	$2 \\ 0 \\ 5$	$7\\-4\\15$
$\mathbf{r}_3 \leftarrow \mathbf{r}_3 - 2\mathbf{r}_1$	$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	0 1 1	$-2 \\ 2 \\ 2$	$2 \\ 0 \\ 1$	$7\\-4\\1$

Subtract multiples of pivot row \mathbf{r}_2 from row beneath to produce zeros in column 2:

	1	0	-2	0	-3
$\mathbf{r}_3 \leftarrow \mathbf{r}_3 - \mathbf{r}_2$	0	1	2	0	-4
$\mathbf{r}_3 \leftarrow \mathbf{r}_3 - \mathbf{r}_2$	0	0	0	1	5

End forward phase. Matrix is in row echelon form.

Backward phase:

Subtract multiples of pivot row \mathbf{r}_3 from rows above to produce zeros in column 4:

	1	0	-2	0	-3
$\mathbf{r}_1 \leftarrow \mathbf{r}_1 - 2\mathbf{r}_3$	0	1	2	0	-4
$\mathbf{r}_1 \leftarrow \mathbf{r}_1 - 2\mathbf{r}_3$	0	0	0	1	5

End backward phase. Matrix is in reduced row echelon form.

 x_3 is free, since its coefficients form a non-pivot column. General solution:

$$x_1 = -3 + 2x_3$$
$$x_2 = -4 - 2x_3$$
$$x_3 \text{ is free}$$
$$x_4 = 5$$