MATH 203-03 (Kunkle), Quiz 2
10 pts, Take-home

Name:
Due 9:00pm, Feb 3, 2023

1 (10 pts).
a. Determine whether the vector $\left[\begin{array}{c}1 \\ 12 \\ 25\end{array}\right]$ is in the span of the vectors

$$
V=\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
0 \\
-8 \\
-20
\end{array}\right]\right\} .
$$

b. Based on your work, would you say that the vectors V span \mathbb{R}^{3} ? Why or why not?

Solution:

1a.(Source: 1.3.11-12) The question asks whether the vector equation

$$
x_{1}\left[\begin{array}{l}
1 \tag{1}\\
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right]+x_{3}\left[\begin{array}{c}
0 \\
-8 \\
-20
\end{array}\right]=\left[\begin{array}{c}
1 \\
12 \\
25
\end{array}\right]
$$

is consistent. Augment and perform the forward phase of row reduction:

aug.'d matrix			row op.	result			row op.	result			
1	1	0	1	$\mathbf{r}_{2} \leftarrow \mathbf{r}_{2}-2 \mathbf{r}_{1}$	1	1	0	1		1	1
0	0	1									
2	3	-8	12	$\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}-\mathbf{r}_{1}$	1	-8	10				
1	4	-20	25	$\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}-3 \mathbf{r}_{1}$	1	-8	10				
0	3	-20	24		0	4	-6				

End forward phase. The reduced augmented matrix, now in row echelon form, doesn't have a pivot in the last column, so the system (1) is consistent. 1b.(Source: 1.4.19-20)

$$
\operatorname{ref}\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 & 3 & -8 \\
1 & 4 & -20
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & -8 \\
0 & 0 & 4
\end{array}\right]
$$

has a pivot in every row, so V spans \mathbb{R}^{3}.

Comment:

If you're asked a question, make sure you answer the question. Don't just stop when you've decided what that answer is. A good solution to part a. should clearly state that the vector $i s$ in the span of V (as well as the work that leads to that conclusion).
b. If you are asked to explain your answer to a question, be careful that you don't simply explain what the question means. For example,
Question: "Does the equation $x^{2}=1$ have more than one solution? Explain."
Insufficient answer: "Yes, because there's more than one x that satisfies the equation." Sufficient answer: "Yes. Both $x=1$ and $x=-1$ satisfy the equation."

MATH 203-01 (Kunkle), Quiz 2
10 pts, Take-home

Name:
Due 9:00pm, Feb 3, 2023

1 (10 pts).
a. Determine whether the vector $\left[\begin{array}{c}-1 \\ 0 \\ 5\end{array}\right]$ is in the span of the vectors

$$
V=\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
5 \\
15 \\
20
\end{array}\right]\right\} .
$$

b. Based on your work, would you say that the vectors V span \mathbb{R}^{3} ? Why or why not?

Solution:

1a.(Source: 1.3.11-12) The question asks whether the vector equation

$$
x_{1}\left[\begin{array}{l}
1 \tag{0}\\
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right]+x_{3}\left[\begin{array}{c}
5 \\
15 \\
20
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
5
\end{array}\right]
$$

is consistent. Augment and perform the forward phase of row reduction:

aug.'d matrix		row op.	result			row op.	result				
1	1	5	-1	$\mathbf{r}_{2} \leftarrow \mathbf{r}_{2}-2 \mathbf{r}_{1}$	1	1	5	-1		1	1

End forward phase. The reduced augmented matrix, now in row echelon form, doesn't have a pivot in the last column, so the system (0) is consistent.
1b.(Source: 1.4.19-20)

$$
\operatorname{ref}\left[\begin{array}{ccc}
1 & 1 & 5 \\
2 & 3 & 15 \\
1 & 4 & 20
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 5 \\
0 & 1 & 5 \\
0 & 0 & 0
\end{array}\right]
$$

does not have a pivot in every row, so V does not span \mathbb{R}^{3}. (done)

Comment:
If you're asked a question, make sure you answer the question. Don't just stop when you've decided what that answer is. A good solution to part a. should clearly state that the vector $i s$ in the span of V (as well as the work that leads to that conclusion).
b. If you are asked to explain your answer to a question, be careful that you don't simply explain what the question means. For example,
Question: "Does the equation $x^{2}=1$ have more than one solution? Explain."
Insufficient answer: "Yes, because there's more than one x that satisfies the equation." Sufficient answer: "Yes. Both $x=1$ and $x=-1$ satisfy the equation."

