MATH 203–03 (Kunkle), Quiz 2 10 pts, Take-home

1 (10 pts).

a. Determine whether the vector $\begin{bmatrix} 1\\12\\25 \end{bmatrix}$ is in the span of the vectors $V = \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\4 \end{bmatrix}, \begin{bmatrix} 0\\-8\\-20 \end{bmatrix} \right\}.$

b. Based on your work, would you say that the vectors V span \mathbb{R}^3 ? Why or why not?

Solution:

1a.(Source: 1.3.11-12) The question asks whether the vector equation

$$x_1 \begin{bmatrix} 1\\2\\1 \end{bmatrix} + x_2 \begin{bmatrix} 1\\3\\4 \end{bmatrix} + x_3 \begin{bmatrix} 0\\-8\\-20 \end{bmatrix} = \begin{bmatrix} 1\\12\\25 \end{bmatrix}$$
(1)

is consistent. Augment and perform the forward phase of row reduction:

aug.'d matrix			rix	row op.	result		row op.	\mathbf{result}					
$\begin{array}{c} 1 \\ 2 \\ 1 \end{array}$	$\begin{array}{c} 1 \\ 3 \\ 4 \end{array}$	$0 \\ -8 \\ -20$	$1 \\ 12 \\ 25$	$\mathbf{r}_2 \leftarrow \mathbf{r}_2 - 2 \mathbf{r}_1$ $\mathbf{r}_3 \leftarrow \mathbf{r}_3 - \mathbf{r}_1$	$\begin{array}{c}1\\0\\0\end{array}$	$egin{array}{c} 1 \\ 1 \\ 3 \end{array}$	$0 \\ -8 \\ -20$	1 10 24	$\mathbf{r}_3 \leftarrow \mathbf{r}_3 - 3\mathbf{r}_1$	$\begin{array}{c}1\\0\\0\end{array}$	$\begin{array}{c} 1 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ -8 \\ 4 \end{array}$	$ \begin{array}{c} 1 \\ 10 \\ -6 \end{array} $

End forward phase. The reduced augmented matrix, now in row echelon form, doesn't have a pivot in the last column, so the system (1) is consistent. 1b.(Source: 1.4.19-20)

	1	1	0		1	1	0]
ref	2	3	-8	=	0	1	-8
	1	4	-20		0	0	4

has a pivot in every row, so V spans \mathbb{R}^3 .

Comment:

If you're asked a question, make sure you answer the question. Don't just stop when you've decided what that answer is. A good solution to part a. should clearly state that the vector *is* in the span of V (as well as the work that leads to that conclusion).

b. If you are asked to explain your answer to a question, be careful that you don't simply explain what the question means. For example,

Question: "Does the equation $x^2 = 1$ have more than one solution? Explain."

Insufficient answer: "Yes, because there's more than one x that satisfies the equation."

Sufficient answer: "Yes. Both x = 1 and x = -1 satisfy the equation."

1 (10 pts).

a. Determine whether the vector $\begin{bmatrix} -1\\0\\5 \end{bmatrix}$ is in the span of the vectors $V = \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\15\\20 \end{bmatrix} \right\}.$

b. Based on your work, would you say that the vectors V span \mathbb{R}^3 ? Why or why not? Solution:

1a.(Source: 1.3.11-12) The question asks whether the vector equation

$$x_1 \begin{bmatrix} 1\\2\\1 \end{bmatrix} + x_2 \begin{bmatrix} 1\\3\\4 \end{bmatrix} + x_3 \begin{bmatrix} 5\\15\\20 \end{bmatrix} = \begin{bmatrix} -1\\0\\5 \end{bmatrix}$$
(0)

is consistent. Augment and perform the forward phase of row reduction:

aug.'d matrix	row op.	\mathbf{result}	row op.	result		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \mathbf{r}_2 \leftarrow \mathbf{r}_2 - 2 \mathbf{r}_1 \\ \mathbf{r}_3 \leftarrow \mathbf{r}_3 - \mathbf{r}_1 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{r}_3 \leftarrow \mathbf{r}_3 - 3\mathbf{r}_1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

End forward phase. The reduced augmented matrix, now in row echelon form, doesn't have a pivot in the last column, so the system (0) is consistent. 1b.(Source: 1.4.19-20)

	1	1	5		[1	1	5
ref	2	3	15	=	0	1	5
	1	4	20		0	0	0

does not have a pivot in every row, so V does not span \mathbb{R}^3 .

Comment:

If you're asked a question, make sure you answer the question. Don't just stop when you've decided what that answer is. A good solution to part a. should clearly state that the vector *is* in the span of V(as well as the work that leads to that conclusion).

b. If you are asked to explain your answer to a question, be careful that you don't simply explain what the question means. For example,

Question: "Does the equation $x^2 = 1$ have more than one solution? Explain."

Insufficient answer: "Yes, because there's more than one x that satisfies the equation."

Sufficient answer: "Yes. Both x = 1 and x = -1 satisfy the equation."

(done)