MATH 203-01\&03 (Kunkle), Quiz 3
10 pts, Take-home

Name: \qquad
Due 9:00pm, Feb 3, 2023

1. Let $G=\left[\begin{array}{cccc}1 & 1 & -1 & -5 \\ 4 & 2 & 2 & -22 \\ 1 & 4 & -10 & -1\end{array}\right]$. and $\mathbf{p}=\left[\begin{array}{c}2 \\ 0 \\ -3 \\ -1\end{array}\right]$.
a (2 pts). Calculate the product $G \mathbf{p}$ or explain why it does not exist.
b (6 pts). Express the solution(s) to $G \mathbf{x}=\mathbf{0}$ in parametric form.
c $(2 \mathrm{pts})$. How many solutions are there to $G \mathbf{x}=\left[\begin{array}{l}10 \\ 24 \\ 33\end{array}\right]$? Explain.

Solution:

1b.(Source: 1.4.11-12,1.5.6-12) To solve the homogeneous system, row reduce G. There's no need to augment the zero column $\mathbf{0}$ if we remember that it's unchanged by row operations.

row operation	result			
initial matrix	1	1	-1	-5
4	2	2	-22	
1	4	-10	-1	
$\mathbf{r}_{2} \leftarrow \mathbf{r}_{2}-4 \mathbf{r}_{1}$	1	1	-1	-5
$\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}-\mathbf{r}_{1}$	0	-2	6	-2
0	3	-9	4	
	1	1	-1	-5
$\mathbf{r}_{2} \leftarrow-\frac{1}{2} \mathbf{r}_{2}$	0	1	-3	1
	0	3	-9	4
	1	1	-1	-5
$\mathbf{r}_{3} \leftarrow \mathbf{r}_{3}-3 \mathbf{r}_{2}$	0	1	-3	1
	0	0	0	1
$\mathbf{r}_{2} \leftarrow \mathbf{r}_{2}-\mathbf{r}_{3}$	1	1	-1	0
$\mathbf{r}_{1} \leftarrow \mathbf{r}_{1}+5 \mathbf{r}_{3}$	0	1	-3	0
0	0	0	1	
	1	0	2	0
$\mathbf{r}_{1} \leftarrow \mathbf{r}_{1}-\mathbf{r}_{2}$	0	1	-3	0
	0	0	0	1

Solution in ... parametric form: parametric vector form:

$$
\begin{array}{r}
x_{1}=-2 x_{3} \\
x_{2}=3 x_{3} \\
x_{3}=\text { free } \\
x_{4}=0
\end{array} \quad \mathbf{x}=s\left[\begin{array}{c}
-2 \\
3 \\
1 \\
0
\end{array}\right] .
$$

1a.(Source: 1.4.5)

$$
\begin{aligned}
G \mathbf{p} & =\left[\begin{array}{cccc}
1 & 1 & -1 & -5 \\
4 & 2 & 2 & -22 \\
1 & 4 & -10 & -1
\end{array}\right]\left[\begin{array}{c}
2 \\
0 \\
-3 \\
-1
\end{array}\right]=2\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]+0\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]-3\left[\begin{array}{c}
-1 \\
2 \\
-10
\end{array}\right]-\left[\begin{array}{c}
-5 \\
-22 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
8 \\
2
\end{array}\right]+\mathbf{0}+\left[\begin{array}{c}
3 \\
-6 \\
30
\end{array}\right]+\left[\begin{array}{c}
5 \\
22 \\
1
\end{array}\right]=\left[\begin{array}{l}
10 \\
24 \\
33
\end{array}\right]
\end{aligned}
$$

1c.(Source: 1.2.19, 1.5.19-20) The vector \mathbf{p} is a solution to $G \mathbf{x}=\left[\begin{array}{l}10 \\ 24 \\ 33\end{array}\right]$. By Theorem 6, p.
49, the solutions to $G \mathbf{x}=\left[\begin{array}{l}10 \\ 24 \\ 33\end{array}\right]$ are all vectors of the form $\left[\begin{array}{c}2 \\ 0 \\ -3 \\ -1\end{array}\right]+s\left[\begin{array}{c}-2 \\ 3 \\ 1 \\ 0\end{array}\right]$. Therefore, there are infinitely many solutions to $G \mathbf{x}=\left[\begin{array}{l}10 \\ 24 \\ 33\end{array}\right]$.
1c. Alternate solution. \mathbf{p} is a solution to $G \mathbf{x}=\left[\begin{array}{l}10 \\ 24 \\ 33\end{array}\right]$, so the system has at least one solution. Since G contains a free variable, $G \mathbf{x}=\left[\begin{array}{l}10 \\ 24 \\ 33\end{array}\right]$ must have infinitely many solutions.
(done)
Comment: 1c. A free variable in a consistent system implies that the system has infinitely many variables, but the presence of a free variable does not by itself imply that a nonhomogeneous system has infinitely many variables. In 1c., it's important to note that part a. shows that $G \mathbf{x}=\left[\begin{array}{l}10 \\ 24 \\ 33\end{array}\right]$ has a solution.

