MATH 203-03 (Kunkle), Quiz 4
10 pts, 10 minutes

Name:
Feb 17, 2023

1 (10 pts). Suppose that columns of B are linearly dependent. Explain why the columns of $A B$ must also be linearly dependent.
You should assume that the sizes of A and B allow these matrices to be multiplied.
Solution:
$1(10 \mathrm{pts})$.(Source: 2.1 .22) Recall that the columns of a matrix C are linearly dependent if and only if $C \mathbf{x}=\mathbf{0}$ for some nonzero vector \mathbf{x}.

Since the columns of B are linearly dependent, there's a nonzero vector \mathbf{x} for which $B \mathbf{x}=\mathbf{0}$. But then $A B \mathbf{x}=A \mathbf{0}=\mathbf{0}$, so the columns of $A B$ are also linearly dependent.

MATH 203-01 (Kunkle), Quiz 4
10 pts, 10 minutes

Name:
Feb 17, 2023

1 (10 pts). Find the inverse of

$$
\left[\begin{array}{ccc}
3 & -1 & 0 \\
0 & 1 & 2 \\
-6 & 2 & 1
\end{array}\right]
$$

or show that it does not exist.

Solution:

1(10 pts).(Source: 2.2.31-32) Augment the given matrix with the identity and row-reduce.

row operation	result					
(beginning matrix)	3	-1	0	1	0	0
	0	1	2	0	1	0
	2	1	0	0	1	
	3	-1	0	1	0	0
0	1	2	0	1	0	
0	0	1	2	0	1	
	$\mathbf{r}_{2} \leftarrow \mathbf{r}_{2}-2 \mathbf{r}_{3}$	3	-1	0	1	0
0	1	0	-4	1	-2	
	0	0	1	2	0	1
	3	0	0	-3	1	-2
$\mathbf{r}_{1} \leftarrow \mathbf{r}_{1}+\mathbf{r}_{2}$	0	1	0	-4	1	-2
	0	0	1	2	0	1
	1	0	0	-1	$\frac{1}{3}$	$-\frac{2}{3}$
	0	1	0	-4	1	-2
	0	0	1	2	0	1

Therefore the inverse matrix is

$$
\left[\begin{array}{ccc}
-1 & \frac{1}{3} & -\frac{2}{3} \\
-4 & 1 & -2 \\
2 & 0 & 1
\end{array}\right]
$$

