math 203-03 (Kunkle), Quiz 5
10 pts, 10 minutes

Name:
Feb 24, 2023

1 (10 pts). Compute the determinant by cofactor expansion.

$$
\left|\begin{array}{cccc}
2 & -1 & 5 & 1 \\
0 & 0 & 3 & 0 \\
6 & -2 & 1 & 0 \\
-3 & 0 & 1 & 2
\end{array}\right|
$$

Solution:

1.(Source: 3.1.9-12) The i, j cofactor of a matrix is $(-1)^{i+j}$ times the determinant of the submatrix obtained by deleting the i th and j th column of the matrix. You can picture the $(-1)^{i+j}$ like this:

$$
\begin{array}{ccccc}
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
+ & - & + & - & \cdots \tag{0}\\
- & + & - & + & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$

Expanding along the second row,

$$
\left|\begin{array}{cccc}
2 & -1 & 5 & 1 \\
0 & 0 & 3 & 0 \\
6 & -2 & 1 & 0 \\
-3 & 0 & 1 & 2
\end{array}\right|=-3\left|\begin{array}{ccc}
2 & -1 & 1 \\
6 & -2 & 0 \\
-3 & 0 & 2
\end{array}\right|
$$

When we expand along the second row of the 3×3, this becomes

$$
-3\left(-6\left|\begin{array}{cc}
-1 & 1 \\
0 & 2
\end{array}\right|+(-2)\left|\begin{array}{cc}
2 & 1 \\
-3 & 2
\end{array}\right|\right)
$$

When applying the signs (0), don't confuse the second row of the 3×3 with the third row of the original 4×4.

Now calculate the 2×2 's:

$$
-3(-6(-1 \cdot 2)+(-2)(2 \cdot 2-1(-3)))=6
$$

(done)
Note that the formula $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$ is equivalent to cofactor expansion along the top row of the 2×2 (or, for that matter, along any of its rows or columns).

MATH 203-01 (Kunkle), Quiz 5
$10 \mathrm{pts}, 10$ minutes

Name:
Feb 24, 2023

1 (10 pts). Explain why the columns of the $n \times n$ matrix M must span \mathbb{R}^{n} whenever $M^{2} \mathbf{x}=\mathbf{0}$ has only the trivial solution.
1.(Source: 2.3.34) The solution uses the Invertible Matrix Theorem, or IMT (Theorem 8 $\S 2.3$ of out text) as well as this fact we saw in class: if A and B are square matrices of the same size, then A and B are invertible if and only if $A B$ is invertible. This is a consequence of Theorem $6 \S 2.2$ and the IMT; see exercises $2.3 .35 \& 36$. You can also remember it by using Theorems 4 and 6 from $\S 3.2$ of our text.

Solution:

By the IMT (parts a and d, as it appears our text), for $M^{2} \mathbf{x}=\mathbf{0}$ to have only the trivial solution, $M^{2}=M M$ must be invertible. But this implies M must be invertible, and so its columns must span \mathbb{R}^{n} (IMT, a and h).

