MATH 203–03 (Kunkle), Quiz 5	,
10 pts, 10 minutes	

Name: _____ Feb 24, 2023

1 (10 pts). Compute the determinant by cofactor expansion.

2	-1	5	1
0	0	3	0
6	-2	1	0
-3	0	1	2

Solution:

1.(Source: 3.1.9-12) The i, j cofactor of a matrix is $(-1)^{i+j}$ times the determinant of the submatrix obtained by deleting the *i*th and *j*th column of the matrix. You can picture the $(-1)^{i+j}$ like this:

+	—	+	—	•••	
—	+	—	+	•••	
+	—	+	—	•••	(0)
_	+	—	+	•••	()
÷	÷	÷	÷	·	

Expanding along the second row,

2	-1	5	1		9	1	1
0	0	3	0	9		-1	
6	-2	1	0	= -3	0	-2	0
-3	0	1	2	= -3	-3	0	2

When we expand along the second row of the 3×3 , this becomes

 $-3\left(-6\begin{vmatrix}-1 & 1\\ 0 & 2\end{vmatrix} + (-2)\begin{vmatrix}2 & 1\\ -3 & 2\end{vmatrix}\right)$

When applying the signs (0), don't confuse the second row of the 3×3 with the third row of the original 4×4 .

Now calculate the 2×2 's:

$$-3(-6(-1\cdot 2) + (-2)(2\cdot 2 - 1(-3))) = 6.$$

(done)

Note that the formula $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$ is equivalent to cofactor expansion along the top row of the 2 × 2 (or, for that matter, along any of its rows or columns).

MATH 203–01 (Kunkle), Quiz 5 10 pts, 10 minutes

Name: _____ Feb 24, 2023

1 (10 pts). Explain why the columns of the $n \times n$ matrix M must span \mathbb{R}^n whenever $M^2 \mathbf{x} = \mathbf{0}$ has only the trivial solution.

1.(Source: 2.3.34) The solution uses the Invertible Matrix Theorem, or IMT (Theorem 8 §2.3 of out text) as well as this fact we saw in class: if A and B are square matrices of the same size, then A and B are invertible if and only if AB is invertible. This is a consequence of Theorem 6 §2.2 and the IMT; see exercises 2.3.35&36. You can also remember it by using Theorems 4 and 6 from §3.2 of our text.

Solution:

By the IMT (parts a and d, as it appears our text), for $M^2 \mathbf{x} = \mathbf{0}$ to have only the trivial solution, $M^2 = MM$ must be invertible. But this implies M must be invertible, and so its columns must span \mathbb{R}^n (IMT, a and h).