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. — . o Column
* Matrix factorizations: Even when written with j
partitioned matrices, the system of equations is [ay; o+ Tay! o ap ]
- complicated. To further simplify the computations, : : :
the CFD software at Boeing uses what is called Rowi [lag oo Bagd o0 a | =4
an LU factorization of the coefficient matrix. »
Section 2.5 discusses LU and other useful matrix ' a: 4
factorizations. Further details about factorizations - '}'1 ':” ",m
] appear at several points later in the text. a a; a,
To analyze a solution of an airflow system, engineers FIGURE 1 Matrix notatian.
want to visualize the airflow over the surface of the plane. TU-Delft and Air France-KLM are investigating a flying V "
They use computer graphics, and linear algebra provides aircraft design because of its potential for significantly better fuel Sums and Scalar M ultlples
economy.

the engine for the graphics. The wire-frame model of the The arithmetic for vectors described earlier has a natural extension to matrices. We say

that two matrices are equal if they have the same size (i.e., the same number of rows
and the same number of columns) and if their corresponding columns are equal, which
amounts to saying that their corresponding entries are equal. If A and B are m x n
matrices, then the sum 4 4 B is the m x n matrix whose columns are the sums of
the corresponding columns in A and B. Since vector addition of the columns is done
entrywise, each entry in A + B is the sum of the corresponding entries in A and B. The
sum A + B is defined only when A and B are the same size.

plane’s surface is stored as data in many matrices. Once the

image has been rendered on a computer screen, engineers Each of these operations is accomplished by appropriate
can change its scale, zoom in or out of small regions, and matrix multiplications. Section 2.7 explains the basic
rotate the image to see parts that may be hidden from view.  ideas.

EXAMPLE 1 Let

Our ability to analyze and solve equations will be greatly enhanced when we can perform 4 0 5 ol i o C = 2 =3
algebraic operations with matrices. Furthermore, the definitions and theorems in this o [—I 3 2]’ B = 3 5 77 Lo 1
chapter provide some basic tools for handling the many applications of linear algebra

that involve two or more matrices. For n X # matrices, the Invertible Matrix Theorem Then TN i o

in Section 2.3 ties together most of the concepts treated earlier in the text. Sections 2.4 A+ B = [2 8 9]

and 2.5 examine partitioned matrices and matrix factorizations, which appear in most
modern uses of linear algebra. Sections 2.6 and 2.7 describe two interesting applications
of matrix algebra: to economics and to computer graphics. Sections 2.8 and 2.9 provide
readers enough information about subspaces to move directly into Chapters 5, 6, and
7, without covering Chapter 4. You may want to omit these two sections if you plan to
cover Chapter 4 before moving to Chapter 5.

...............................................................................................................

If A ts an m x n matrix—that is, a matrix with 7 rows and 7 columns—then the scalar
entry in the ithrow and j th column of A is denoted by a; s and is called the (i, j }-entry of
A. See Figure 1. For instance, the (3, 2)-entry is the number a3, in the third row, second
column. Each column of A is a list of m real numbers, which identifies a vector in R".
Often, these columns are denoted by ay, ..., a,, and the matrix A4 is written as

A=[ay a - a,]

Observe that the number a;; is the ith entry (from the top) of the jth column vector a;.
The diagonal entries in an 7 x # matrix A = [aij Jare ayy, a2z, a33,..., and they

THEOREM |

but 4 + C is not defined because A and C have different sizes. o

If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose
columns are r times the corresponding columns in A. As with vectors, —4 stands for
(=1)A, and A — B is the same as 4 4 (—1)B.

EXAMPLE 2 If A and B are the matrices in Example 1, then

| 1 TRz 2aL 2
23:2[3 7]-[6 10 14]

|
5
4 0 5] [2 2 21_[2-2 3
A"23=[—1 3 2]“[6 10 |4]‘[—7 =y —12] =

It was unnecessary in Example 2 to compute 4 — 28 as 4 + (—1)28 because the
usual rules of algebra apply to sums and scalar multiples of matrices, as the following
theorem shows.

Let 4, B, and C be matrices of the same size, and let r and s be scalars.

form the main diagonal of A. A diagonal matrix is a square 1 x # matrix whose 0 A+B=B+ 4 d r{A+B)=rdAd+rB
nendiagonal entries are zero. An example is the # x n identity matrix, /,. An m x n b. (A+B)+C=A+(B+C) e. (r+s)A=rA+sA
matrix whose entries are all zero is a zero matrix and is written as 0. The size of a zero c. A+0=4 f. r(sd) = (rs)A

matrix is usually clear from the context.
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Each equality in Theorem 1 is verified by showing that the matrix on the left side has
the same size as the matrix on the right and that corresponding columns are equal, Size
is no problem because A, B, and C are equal in size. The equality of columns follows
immediately from analogous properties of vectors. For instance, if the jth columns of

A, B,and C area;, by, and ¢;, respectively, then the j th columns of (A+ B)+ Cand
A+ (B+C)are

(@j+bj)+e; and a; +(b; +c)

respectively. Since these two vector sums are equal for each J» property (b) is verified.

Because of the associative property of addition, we can simply write A + B + C
for the sum, which can be computed either as (A+B)+Coras A+ (B + C). The
same applies to sums of four or more matrices.

Matrix Multiplication

When a matrix B multiplies a vector x, it transforms X into the vector Bx. If this vector
is then multiplied in turn by a matrix A, the resulting vector is A(Bx). See Figure 2.

Multiplicution Multiplication
/—byN by A
Xe [ L)
Bx A(Bx)

FIGURE 2 Multiplication by 2 and then A.

Thus A(Bx) is produced from x by a composition of mappings—the linear transfor-
mations studied in Section 1.8. Our goal is to represent this composite mapping as
multiplication by a single matrix, denoted by AB, so that

A(Bx) = (AB)x ¢))
See Figure 3.
Multiplication Multiplication
e AT 7
Xe 3 * A(Bx)
Bx

Multiplication
by AB
FIGURE 3 Multiplication by AB.
IfAism xn, Bisn x p,and x is in R?”, denote the columns of B by by,....,b,

and the entries in X by x,, ... »Xp. Then

Bx=xb +-.. + xpb,

By the linearity of multiplication by A,

A(Bx) = A(xiby) + -+ + A(x,b))
=x1Ab; + .- + x,4b,

DEFINITION
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The vector A(BX) is a linear combination of the vectors Ab,, . .. ; Ab, using the entries
in x as weights. In matrix notation, this linear combination is writien as
A(Bx) =[Ab; Aby .-+ Ab,]x

Thus multiplication by [ Ab; Aby .- Ab,] transforms x into A(Bx). We have
found the matrix we sought!

If A is an m X n matrix, and'if B is an n X p matrix with columns b;....,b,,,.then
the product AB is the m X p matrix whose columns are Aby,..., Ab,. That is,

AB=A[b, by -+ by]=[Aby Ab, .- Ab,]

This definition makes equation (1) true for all x in R”. Equati(?n (1) proves lhat. th.e
composite mapping in Figure 3 is a linear transformation and that its standard ma}nx is
AB. Multiplication of matrices corresponds to composition of linear transformations.

2 3 4 3 6
EXAMPLE 3 Compute AB, where A = [I _s and B = | -2 3]

SOLUTION Write B =[b; by bs], and compute:

=7 3] =3 3]3) =T 3]E]
-[21] -] -[5]

Then L t 2Ll

11 o
AB = A[b, b b1]=|:__| 13 _9]

e

]b, /“): .lb\

Notice that since the first column of AB is Ab,, this column is a linear corpbinatnon
of the columns of A using the entries in by as weights. A similar statement is true for
each column of AB.

Each column of 4B is a linear combination of the columns of A using weights from
the corresponding column of B.

Obviously, the number of columns of A must match the number of rows in B in
order for a linear combination such as Ab, to be defined. Also, the definition of AB
shows that AB has the same number of rows as A and the same number of columns

as B,

EXAMPLE 4 If Aisa 3 x5 matrix and B is a 5 x 2 matrix, what are the sizes of
AB and BA, if they are defined?
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SOLUTION  Since A has 5 columns and B has 5 rows, the product AB is defined and

is a 3 x 2 matrix;

A B AB
¥ ok ok % % * ok * ok
* ok ok k% ¥ x| =% %
* ok ok ok % * ok * %
* ¥
* %

3x$§ 5x2 3x2
| Match l [
Sizeof AB |

The product BA is nor defined because the 2 columns of B do not match the 3 rows
of A. b

The definition of AB is important for theoretical work and applications, but the
following rule provides a more efficient method for calculating the individual entries in
AB when working small problems by hand,

ROW-COLUMN RULE FOR COMPUTING AB

If the product AB is defined, then the entry in row i and column j of AB is the
sum of the products of corresponding entries from row i of A4 and column J of
B.If (AB);; denotes the (/, J)-entry in AB, and if A is an n X i matrix, then

(AB)y = anbyj + ajhyy + .. + Qinby;

To verify this rule, let B = [b, b, ). Column j of AB is Aby, and we can
compute Ah; by the row-vector rule for computing Ax from Section 1.4. The ith entry
in Ab; is the sum of the products of corresponding entries from row i of A and the

vector by, which is precisely the computation described in the rule for computing the
(i, j)-entry of AB.

EXAMPLE 5 Use the row—column rule to compute two of the entries in 48 for the
matrices in Example 3. An inspection of the numbers involved will make it clear how
the two methods for calculating AB produce the same matrix.

SOLUTION To find the entry in row | and column 3 of AB, consider row 1 of A and
column 3 of B. Multiply corresponding entries and add the results, as shown below:

\
AB—_”Z 3114 3 6! _[O DO 2(6)+3(3)_!:I 0O 21
_1—51—23"DD O o o o
Fortheenlryinrow2nndcolumn20fAB, use row 2 of A and column 2 of B:

t
2 3774 3 671 _ToO O 27_(o o 2
~L=s]in =2 31T |0 u@)w=s=2) D]‘[D 13 0

F
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EXAMPLE 6 Find the entries in the second row of AB, where

2—52 4 -6

=1 3 - B=|7 1

A=l 681 302
-3 0 9

SOLUTION By the row—column rule, the entries of the second row of AB come from
row 2 of A (and the columns of B):

2 =5 0
ut —6
- -1 3 —4 |:4 I

7
6 -8 -7 2
-3 0 9 g -
0 O —D (|
—4421-12 6+3-8 5 1 m
0 O _D [

Notice that since Example 6 requested only the second row of AB, we could have
written just the second row of A to the left of B and computed

4 —6
-4} 7 1]:[5 l]

This observation about rows of AB is true in general and follows from the row—column
rule. Let row; (A) denote the i th row of a matrix A. Then

row; (AB) = row;(A4) - B (2)

Properties of Matrix Multiplication

The following theorem lists the standard properties of matrix m}lltlg)r’l'lcatlon. Recall that
I,, represents the m x m identity matrix and /,,x = x for all x in R"™.

Let A be an m X n matrix, and let B and C have sizes for which the indicated
sums and products are defined.
A(BC) = (AB)C
AB+C)=AB + AC
(B+C)A=BA+CA
r(AB) = (rA)B = A(rB)
for any scalar r

e. InA=A=Al,

(associative law of multiplication)
(left distributive law)
(right distributive law)

& o o p

(identity for matrix multiplication)

PROOF Properties (b)—(e) are considered in the exercis_e§. Propt-erty (a) follows f.rom
the fact that matrix multiplication corresponds to composition of lmea:: t.ransffofnna:}ons
(which are functions), and it is known (or easy to check) that the composition of functions
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is associative. Here is another proof of (a) that rests on the “column definition” of the

product of two matrices. Let Powers of a Matrix
- C=le - ¢ If A is an # x n matrix and if k is a positive integer, then A* denotes the product of k
By the definition of matrix multiplication, copies of A:
A‘ = A A
BC =[Be) -+ Bey) ——

- ’
v K

; A(BC) =[A(Be)) -+ A(Bcp)]

If A is nonzero and if x is in R”, then A*x is the result of left-multiplying x by A
repeatedly k times. If k& = 0, then A%x should be x itself. Thus A® is interpreted as
the identity matrix. Matrix powers are useful in both theory and applications (Sections
2.6, 5.9, and later in the text).

Recall from equation (1) that the definition of AB makes A(Bx) = (AB)x for all x, so
A(BC) =[(AB)e, -+ (AB)cp]=(AB)C o

The associative and distributive laws in Theorems 1 and 2 say essentially that pairs
of parentheses in matrix expressions can be inserted and deleted in the same way as in the

algebra of real numbers. In particular, we can write ABC for the product, which can be The Tra nspose Of a Matrix
computed either as A(BC) or as (AB)C.' Similarly, a product ABCD of four matrices ] . r
can be computed as A(BCD) or (ABC)D or A(BC)D, and so on. It does not matter Givenan m x n matrix A, the transpose of A is the n x i matrix, denoted by A", whose
how we group the matrices when computing the product, so long as the left-to-right order columns are formed from the corresponding rows of A.
of the matrices is preserved.
The left-to-right order in products is critical because 4B and BA are usually not EXAMPLE 8 Let
the same. This is not surprising, because the columns of AB are linear combinations of
the columns of A, whereas the columns of BA are constructed from the columns of B, a b =5 2 | | | |
The position of the factors in the product AB is emphasized by saying that A is right- A=, s e DR -3 5 =2 17
_ p ¢ d 0 4
multiplied by B or that B is left-multiplied by A. If AB = BA, we say that A and B
commute with one another. Then
1 =3
_|5 1 _12 0 . r_|a ¢ 72a| =5= 1= 20 r_|1 S5
EXAMPLE 7 Lf:tA—|:3 _2] and B = 4 3:'.Showthatthesemalru:esdo A _[b d], BT = [ 5 3 4], C' = | —2 o
not commute. That is, verify that AB # BA. 17
SOLUTION
5 112 0 14 3 : : . .
‘ S5 3022 || eaia [T -2 -6 THEOREM 3 Let A and B denote matrices whose sizes are appropriate for the following sums
JU atn 2 0[5 1]_[10 2 . and products.
i =14 3|[3 -2|T )29 -2 a (A" =4

I
| _ , _ b (A+B)7T =47 + BT
Example 7 illustrates the first of the following list of important differences between c. Forany scalar r, (rA)T = rAT
W matrix algebra and the ordinary algebra of real numbers. See Exercises 9-12 for exam- - y : =

k ples of these situations. d. (AB)T = BTAT
!
1 Proofs of (a)-(c) are straightforward and are omitted. For (d), see Exercise 41.
' Warnings: Usually, (AB)T is not equal to A7B7, even when A and B have sizes such that the
1. In general, AB # BA. product A7B7 is defined.

i i : PERTI PR I ization of Theorem 3(d) to products of more than two factors can be
2. The cancellation laws do not hold for matrix multiplication, That is, if Tl}e generaliz (d)top
stated in words as follows:

AB = AC, then it is not true in general that B = C. (See Exercise 10.)
3. If a product AB is the zero matrix, you cannot conclude in general that either
A =0or B = 0. (See Exercise 12.) The transpose of a product of matrices equals the product of their transposes in the
reverse order.

'When B is square and C has fewer columns than A has rows, it is more efficient 1o compute A(BC) than
(AB)C.

=s

The exercises contain numerical examples that illustrate properties of transposes.




