MATH 221-01 (Kunkle), Exam 3
100 pts, 75 minutes

Name:
Mar 28, 2023

No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Supporting work will be required on every problem worth more than 2 points unless instructions say otherwise.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
$1(19 \mathrm{pts})$. Find the area of the part of the surface $x^{2}-\sqrt{3} y+z=15$ that lies above (or below) the triangle with vertices $(0,0),(2,2),(2,-2)$.
$2(12 \mathrm{pts})$. Find the volume of the solid below $z=(x+y)^{2}$ and above the square in the $x y$-plane with vertices $(0,1),(1,1),(0,2)$, and $(1,2)$.
$3(15 \mathrm{pts})$. Evaluate the double integral $\iint_{R} \frac{y}{x^{2}+y^{2}} d A$ where R is the region between the circles $x^{2}+y^{2}=9$ and $x^{2}+y^{2}=1$ and above the x-axis. That is, $R=\{(x, y) \mid 1 \leq$ $\left.x^{2}+y^{2} \leq 9,0 \leq y\right\}$.

4(16 pts). Let T be the tetrahedron in the first octant bounded by the coordinate planes and the plane $4 x+y+z=4$. Write the triple integral $\iiint_{T} 1 d V$ as an iterated integral in the given order. Do not evaluate this integral.
a. $\iiint 1 d z d y d x$
b. $\iiint 1 d x d y d z$.
5. Let H be the solid above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=1$. a(12 pts). Write the triple integral $\iiint_{H}\left(x^{2}+y^{2}\right) d V$ as an iterated integral in cylindrical coordinates. Do not evaluate this integral.
$\mathrm{b}(12 \mathrm{pts})$. Write the triple integral $\iiint_{H}\left(x^{2}+y^{2}\right) d V$ as an iterated integral in spherical coordinates. Do not evaluate this integral.
$6(14 \mathrm{pts})$. Let P be the interior of the parallelogram enclosed by the lines

$$
x+3 y=0 \quad x+3 y=1 \quad x-2 y=1 \quad x-2 y=3
$$

Rewrite the double integral $\iint_{P} y d A$ as an iterated integral in the variables $u=x+3 y$ and $v=x-2 y$. Do not evaluate this integral.

1 (19 pts).(Source: 15.5.4) The area of the surface $z=15-x^{2}+\sqrt{3} y$ is the integral of $d S=\sqrt{1+z_{x}^{2}+z_{y}^{2}} d x d y=\sqrt{1+(2 x)^{2}+\sqrt{3}^{2}} d x d y=$ $\sqrt{4+4 x^{2}} d x d y$. This integral is easiest to compute in the order $d y d x$:

$$
\begin{aligned}
S & =\int_{0}^{2} \int_{-x}^{x} 2 \sqrt{1+x^{2}} d y d x \\
& =\int_{0}^{2} 4 x \sqrt{1+x^{2}} d x=\left.\frac{4}{3}\left(1+x^{2}\right)^{3 / 2}\right|_{0} ^{2}=\frac{4}{3}\left(5^{3 / 2}-1\right) .
\end{aligned}
$$

$2(12 \mathrm{pts})$.(Source: 15.1.43) The volume is the double integral $\int_{0}^{1} \int_{1}^{2}(x+y)^{2} d y d x$. It's easiest to integrate if we notice that $(x+y)_{x}$ and $(x+y)_{y}$ both equal 1 and avoid multiplying out powers of $(x+y)$:

$$
\begin{aligned}
\int_{0}^{1} \int_{1}^{2}(x+y)^{2} d y d x & =\left.\int_{0}^{1} \frac{1}{3}(x+y)^{3}\right|_{1} ^{2} d x=\int_{0}^{1} \frac{1}{3}\left((x+2)^{3}-(x+1)^{3}\right) d x \\
& =\left.\frac{1}{12}\left((x+2)^{4}-(x+1)^{4}\right)\right|_{0} ^{1}=\frac{1}{12}\left(3^{4}-2^{4}-2^{4}+1\right)=\frac{25}{6}
\end{aligned}
$$

$3(15 \mathrm{pts})$.(Source: $15 \cdot 3 \cdot 10,13)$ Convert to polar, using $x^{2}+y^{2}=r^{2}$ and $y=r \sin \theta$ and $d A=r d r d \theta$:

$$
\begin{gathered}
\int_{0}^{\pi} \int_{1}^{3} \frac{r \sin \theta}{r^{2}} r d r d \theta=\int_{0}^{\pi} \int_{1}^{3} \sin \theta d r d \theta \\
=\int_{0}^{\pi} 2 \sin \theta d \theta=-\left.\cos \theta\right|_{0} ^{\pi}=2
\end{gathered}
$$

Several students assumed that the integral over R is twice the integral over the right half of R. That's true for this particular integrand (because $f(x, y)$ is even in x) but not in general, so I penalized anyone who made that assumption without some reason.
$4(16 \mathrm{pts})$.(Source: $15 \cdot 6 \cdot 16,29-36)$ See the figure for the graph of $4 x+y+z=4$. To find the equations of the lines of intersection (shown in red, blue, and black) of the plane and the coordinate planes, substitute x, y, or $z=0$.

$$
\begin{aligned}
& \text { a. } \int_{0}^{1} \int_{0}^{4-4 x} \int_{0}^{4-y-4 x} d z d y d x \\
& \text { b. } d s \int_{0}^{4} \int_{0}^{4-z} \int_{0}^{1-\frac{1}{4} y-\frac{1}{4} z} d x d y d z
\end{aligned}
$$

$5 \mathrm{a}(12 \mathrm{pts})$.(Source: 15.7.32) $\quad x^{2}+y^{2}=r^{2}$ and $d V=r d z d r d \theta$. Integral is $\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{1} d z r^{3} d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{z} r^{3} d r d z d \theta$.

5 b (12 pts).(Source: 15.8.15) $\quad r^{2}=\rho^{2} \sin ^{2} \phi$ and $d V=\rho^{2} \sin \phi d \rho, d \phi d \theta$. Translate $z=1$ to spherical coordinates using $z=\rho \cos \phi$. See figure. $\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{\sec \phi} \rho^{4} \sin ^{3} \phi d p d \phi d \theta$
$6(14 \mathrm{pts})$.(Source: 15.9.23) The double integral equals $\int_{0}^{1} \int_{1}^{3} y\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d v d u$. Solve for u and v in terms of x and y :

$$
\begin{aligned}
& u=x+3 y \\
& \frac{v=x-2 y}{u-v=5 y}
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& y=\frac{1}{5} u-\frac{1}{5} v \\
& x=v+2 y=\frac{2}{5} u+\frac{3}{5} v
\end{aligned}
$$

Then

$$
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\operatorname{det}\left(\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right)\right|=\left|\operatorname{det}\left(\begin{array}{cc}
\frac{2}{5} & \frac{3}{5} \\
\frac{1}{5} & -\frac{1}{5}
\end{array}\right)\right|=\left|-\frac{2}{25}-\frac{3}{25}\right|=\frac{1}{5}
$$

and the integral equals

$$
\int_{0}^{1} \int_{1}^{3}\left(\frac{1}{5} u-\frac{1}{5} v\right) \frac{1}{5} d v d u
$$

