MATH 221-01 (Kunkle), Exam 4 100 pts, 75 minutes

Name:
Apr 18, 2023

Page 1 of 1
No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Supporting work will be required on every problem worth more than 2 points unless instructions say otherwise.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
(8 pts). Match each graph of a vector field to its equation.

a. $\langle x+y, x+y\rangle$
b. $\langle x, x+2\rangle$
c. $\langle y, x+y\rangle$
d. $\langle x-y, 0\rangle$
e. $\langle x,-2 x\rangle$
$2(14 \mathrm{pts})$. Let C be the curve parametrized by $\langle\sin t, \cos t, 1-t\rangle$ for $0 \leq t \leq \frac{\pi}{2}$ and valuate the line integral $\int_{C} x y d s$.
$3(14 \mathrm{pts})$. Evaluate the line integral $\int_{A}\left(\ln \left(1+x^{2}\right)+y\right) d x+(2 x-\ln (2+y)) d y$ where A is the path from $(1,0)$ to $(-1,0)$ along the parabola $y=x^{2}-1$ and then from $(-1,0)$ to $(1,0)$ along the x-axis.
$4(12 \mathrm{pts})$. Let $\mathbf{G}=\left\langle e^{x+y}, y+z, e^{2 x-3 z}\right\rangle$ and find the following, if it exists.
a. $\operatorname{div} \mathbf{G}$
b. $\operatorname{curl} \mathbf{G}$
c. $\operatorname{div}(\operatorname{curl} \mathbf{G})$
d. $\operatorname{grad}(\operatorname{div} \mathbf{G})$
$5(12 \mathrm{pts})$. Let H be the surface parametrized by $\langle u v, u+v, u-v\rangle$. Find an equation of the plane tangent to H at the point (x, y, z) corresponding to $u=0$ and $v=1$.
$6(26 \mathrm{pts})$. Find the flux of $\mathbf{F}=\langle x,-y, 1\rangle$ across the part of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=2$, oriented upward.
$7(14 \mathrm{pts})$. Evaluate the line integral $\int_{E}\left(e^{x}+y\right) d x+(x-2 y) d y$ where E is the path shown in the figure. (Arcs in the figure are semicircles.)

1(8 pts).(Source: 16.1.11-14) Answers: i.b. ii.c. iii.a. iv.e.
Here's one way to arrive at the answers. Rule out d., since it would be horizontal everywhere. In iii., vectors are parallel; looks like $\langle 1,1\rangle f(x, y)=$ a. In iv., vectors are parallel and independent of y; looks like $\langle 1,-2\rangle f(x)=$ e. i. is vertical when $x=0$, as in b. ii. is vertical when $y=0$, as in c.
$2(14 \mathrm{pts})$.(Source: 16.2 .9$) \quad$ Let $\mathbf{r}=\langle\sin t, \cos t, 1-t\rangle$. Then

$$
d s=\left|\frac{d \mathbf{r}}{d t}\right| d t=|\langle\cos t,-\sin t,-1\rangle| d t=\sqrt{\cos ^{2} t+\sin ^{2} t+(-1)^{2}} d t=\sqrt{2} d t
$$

and the integral equals

$$
\int_{0}^{\pi / 2} \sin t \cos t \sqrt{2} d t=\left.\sqrt{2} \frac{1}{2} \sin ^{2} t\right|_{0} ^{\pi / 2}=\frac{\sqrt{2}}{2}(1-0)=\frac{1}{\sqrt{2}}
$$

3 (14 pts).(Source: 16.4.7) By Green's theorem, the line integral around A (in the negative direction) equals the double integral of

$$
-(2 x-\ln (2+y))_{x}+\left(\ln \left(1+x^{2}\right)+y\right)_{y}
$$

over the region enclosed by A (see figure):

$$
\int_{-1}^{1} \int_{x^{2}-1}^{0}(-2+1) d y d x=\int_{-1}^{1}\left(x^{2}-1\right) d x=\left.\left(\frac{1}{3} x^{3}-x\right)\right|_{-1} ^{1}=-\frac{4}{3}
$$

4(12 pts).(Source: 16.5.1-8,12)

$$
\begin{array}{lll}
\operatorname{grad}=\nabla & \operatorname{div}=\nabla \cdot & \text { curl }=\nabla \times \\
\text { grad scalar }=\text { vector } & \text { div scalar DNE } & \text { curl scalar DNE } \\
\text { grad vector DNE } & \text { div vector }=\text { scalar } & \text { curl vector }=\text { vector }
\end{array}
$$

a. $\nabla \cdot \mathbf{G}=$

$$
\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\left\langle e^{x+y}, y+z, e^{2 x-3 z}\right\rangle=\left(e^{x+y}\right)_{x}+(y+z)_{y}+\left(e^{2 x-3 z}\right)_{z}=e^{x+y}+1-3 e^{2 x-3 z}
$$

b. $\nabla \times \mathbf{G}=$

$$
\begin{aligned}
\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle & \times\left\langle e^{x+y}, y+z, e^{2 x-3 z}\right\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
e^{x+y} & y+z & e^{2 x-3 z}
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y+z & e^{2 x-3 z}
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
e^{x+y} & e^{2 x-3 z}
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
e^{x+y} & y+z
\end{array}\right| \\
& =-\mathbf{i}-2 e^{2 x-3 z} \mathbf{j}-e^{x+y} \mathbf{k} \\
& =\left\langle-,-2 e^{2 x-3 z},-e^{x+y}\right\rangle
\end{aligned}
$$

c. $\operatorname{div}(\operatorname{curl} \mathbf{G})=0$ because $\operatorname{div}(\operatorname{curl} \mathbf{F})=\nabla \cdot \nabla \times \mathbf{F}=0$ for any twice-continuously differentiable vector field \mathbf{F}.
d. $\nabla\left(e^{x+y}+1-3 e^{2 x-3 z}\right)$

$$
\begin{aligned}
& =\left\langle\left(e^{x+y}+1-3 e^{2 x-3 z}\right)_{x},\left(e^{x+y}+1-3 e^{2 x-3 z}\right)_{y},\left(e^{x+y}+1-3 e^{2 x-3 z}\right)_{z}\right\rangle \\
& =\left\langle e^{x+y}-6 e^{2 x-3 z}, e^{x+y}, 9 e^{2 x-3 z}\right\rangle
\end{aligned}
$$

$5(12 \mathrm{pts})$.(Source: 16.6.33-34) The point of tangency is value of $\mathbf{r}=\langle u v, u+v, u-v\rangle$ at $u=0$ and $v=1$, or $\langle 0,1,-1\rangle$.
The normal vector is $\mathbf{r}_{u} \times \mathbf{r}_{v}=\langle v, 1,1\rangle \times\langle u, 1-1\rangle$ which equals, at $u=0$ and $v=1$,

$$
\begin{aligned}
\langle 1,1,1\rangle \times\langle 0,1-1\rangle & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right| \\
& =-2 \mathbf{i}+1 \mathbf{j}+1 \mathbf{k} .
\end{aligned}
$$

The equation of the plane is $-2(x-0)+(y-1)+(z+1)=0$, or $-2 x+y+z=0$.
Alternate solution. Since the plane passes through $(0,1,-1)$ and is parallel to $\langle 1,1,1\rangle$ and $\langle 0,1-1\rangle$, you could instead represent the plane parametrically by

$$
\begin{aligned}
\rho(s, t) & =\langle 0,1,-1\rangle+s\langle 1,1,1\rangle+t\langle 0,1-1\rangle \\
& =\langle s, 1+s+t,-1+s-t\rangle
\end{aligned}
$$

$6(26 \mathrm{pts})$.(Source: 16.7.24) Parametrize the cone by $\mathbf{r}=\langle r \cos \theta, r \sin \theta, r\rangle$ with $0 \leq \theta \leq 2 \pi$ and $1 \leq r \leq 2$. Using this, $\mathbf{n} d S= \pm\left(\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right) d r d \theta$

$$
\begin{aligned}
& = \pm\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos \theta & \sin \theta & 1 \\
-r \sin \theta & r \cos \theta & 0
\end{array}\right| d r d \theta \\
& = \pm\langle-r \cos \theta,-r \sin \theta, r\rangle d r d \theta
\end{aligned}
$$

Since the third component r is positive in our parametrization, use + above so that the \mathbf{n} is oriented upward. Then the flux is

$$
\begin{aligned}
& \int_{1}^{2} \int_{0}^{2 \pi}\langle r \cos \theta,-r \sin \theta, 1\rangle \cdot\langle-r \cos \theta,-r \sin \theta, r\rangle d \theta d r \\
= & \int_{1}^{2} \int_{0}^{2 \pi}\left(-r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta+r\right) d \theta d r \\
= & \int_{1}^{2} \int_{0}^{2 \pi}\left(r-r^{2} \cos (2 \theta)\right) d \theta d r \\
= & \left.\int_{1}^{2}\left(r \theta-r^{2} \frac{1}{2} \sin (2 \theta)\right)\right|_{0} ^{2 \pi} d r \\
= & \int_{1}^{2} 2 \pi r d r=\left.\pi r^{2}\right|_{1} ^{2}=3 \pi
\end{aligned}
$$

$7(14 \mathrm{pts})$.(Source: $16.3 .19-20) \quad\left\langle e^{x}+y, x-2 y\right\rangle$ is conservative on \mathbb{R}^{2}, since $(x-2 y)_{x}=1=$ $\left(e^{x}+y\right)_{y}$, so we can use the Fundamental Theorem to evaluate the line integral. To find a potential for this vector field, begin by integrating f_{x}.

$$
f_{x}=e^{x}+y \quad \Longrightarrow \quad f=e^{x}+x y+c(y)
$$

Then differentiate with respect to y, and set the result equal to $x-2 y$:

$$
f_{y}=x+c^{\prime}(y)=x-2 y \quad \Longrightarrow \quad c^{\prime}(y)=-2 y
$$

Therefore, $c(y)=-y^{2}+K$ for some constant K. Since the value of this constant won't affect the value of the integral, we can take $K=0$ and use the potential function

$$
f=e^{x}+x y-y^{2} .
$$

Now evaluate the integral with the Fundamental Theorem for line integrals:

$$
\int_{E} \nabla f \cdot d \mathbf{r}=\left.f\right|_{(0,0)} ^{(1,1)}=\left.\left(e^{x}+x y-y^{2}\right)\right|_{(0,0)} ^{(1,1)}=e-1
$$

Alternate solution. Because $(x-2 y)_{x}=1=\left(e^{x}+y\right)_{y}$, this integral is path-independent, so we are free to choose the simpler straight-line path $\langle t, t\rangle$ for $0 \leq t \leq 1$. The integral along this path is

$$
\int_{0}^{1}\left(e^{t}+t\right) d t+(t-2 t) d t=\int_{0}^{1} e^{t} d t=\left.e^{t}\right|_{0} ^{1}=e-1
$$

