MATH 221-02 (Kunkle), Exam 3
100 pts, 75 minutes
Name:
Mar 21, 2024
Page 1 of 5
No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.

$$
\begin{aligned}
& \int \sin ^{n} x d x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \int \sin ^{n-2} x d x \\
& \int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x \\
& \int \tan ^{n} x d x=\frac{1}{n-1} \tan ^{n-1} x-\int \tan ^{n-2} x d x \\
& \int \sec ^{n} x d x=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} \int \sec ^{n-2} x d x \quad(n \neq 1)
\end{aligned}
$$

1 (20 pts). Find the minimum value of the function $Q(x, y, z)=x^{2}+2 y^{2}+2 z^{2}$ subject to the constraint $2 x+y-z=20$ and the point where this minimum occurs. $(Q(x, y, z)$ has no maximum subject to this constraint.)
$2 \mathrm{a}(5 \mathrm{pts})$. Find cylindrical coordinates of the point $(x, y, z)=(\sqrt{2}, \sqrt{2},-2 \sqrt{3})$.

$$
r=\square \quad \theta=\square \quad z=
$$

$2 \mathrm{~b}(5 \mathrm{pts})$. Find spherical coordinates of the point $(x, y, z)=(\sqrt{2}, \sqrt{2},-2 \sqrt{3})$.

$$
\rho=\square \quad \phi=\square
$$

$3(15 \mathrm{pts})$. Rewrite the iterated integral to the order indicated, but do not evaluate.
a. $\int_{0}^{2} \int_{3 y}^{6} d x d y=\int_{?}^{?} \int_{?}^{?} d y d x$
b. $\int_{0}^{3} \int_{0}^{3-x} \int_{0}^{9-x^{2}} d z d y d x=\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} d y d x d z$
$4(9 \mathrm{pts})$. Evaluate the double integral $\iint_{[-1,1] \times[0,1]}(x+y) d A$.
$5(10 \mathrm{pts})$. Find the surface area of the graph of $z=x^{2}+3 y$ above the triangle in the $x y$-plane with vertices $(0,0),(6,0)$ and $(6,2)$. Express your answer as an iterated integral, but do not evaluate.
$6(16 \mathrm{pts})$. Find the volume of the region inside both the cylinder $x^{2}+y^{2}=9$ and the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=64$.
$7(20 \mathrm{pts})$. Evaluate the triple integral $\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d V$ where D is the region above the cone $z=\sqrt{x^{2}+y^{2}}$ and inside the sphere $x^{2}+y^{2}+z^{2}=4$.

1 (21 pts).(Source: 14.8.7) By the method of Lagrange multipliers, the minimum of Q subject to $G(x, y, z)=2 x+y-z=20$ must occur at the points on $G=20$ at which $\nabla Q \times \nabla G=\mathbf{0}$:

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 x & 4 y & 4 z \\
2 & 1 & -1
\end{array}\right|=2\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x & 2 y & 2 z \\
2 & 1 & -1
\end{array}\right|=2\langle-2 y-2 z, x+4 z, x-4 y\rangle=\mathbf{0}
$$

By setting the first and second components equal to 0 , find $y=-z$ and $x=-4 z$. Substitute these into the constraint:

$$
2 x+y-z=-8 z-z-z=20 \quad \Longrightarrow \quad z=-2
$$

which implies that $y=2$ and $x=8$. Since this is the only critical point, the minimum must be $Q(8,2,-2)=8^{2}+2 \cdot 2^{2}+2 \cdot(-2)^{2}=80$.
$2 \mathrm{a}(3 \mathrm{pts})$.(Source: $15.7 .3,4) \quad r=\sqrt{x^{2}+y^{2}}=2$. The ray from the origin to the point $(\sqrt{2}, \sqrt{2})$ in the $x y$-plane make an angle $\frac{\pi}{4}$ with the positive x-axis, so $\theta=\frac{\pi}{4}$. z in cylindrical coordinates is the same as z in rectangular coordinates, so $z=-2 \sqrt{3}$.

2 b (3 pts).(Source: $15.8 .3,4) \quad \rho=\sqrt{x^{2}+y^{2}+z^{2}}=4$. The right triangle with sides $\rho=4$, $r=2$, and $z=-2 \sqrt{3}$ is a $\frac{\pi}{6}-\frac{\pi}{3}-\frac{\pi}{2}$ with the $\frac{\pi}{3}$ angle between sides 2 and $4 . \phi=\frac{\pi}{2}+\frac{\pi}{3}=\frac{5 \pi}{6}$. $3 \mathrm{a}(5 \mathrm{pts})$.(Source: 15.2 .51) See figure for this region in the plane. Integral equals $\int_{0}^{6} \int_{0}^{x / 3} d y d x$

$3 \mathrm{~b}(8 \mathrm{pts})$.(Source: $15 \cdot 6 \cdot 28,31$) See figure for this region in space. Integral is $\int_{0}^{9} \int_{0}^{\sqrt{9-z}} \int_{0}^{3-x} d y d x d z$.

4(7 pts).(Source: 15.1.16) Evaluate the double integral by iterated integration: $\int_{-1}^{1} \int_{0}^{1}(x+y) d y d x=\left.\int_{-1}^{1}\left(x y+\frac{1}{2} y^{2}\right)\right|_{0} ^{1} d x$

$$
=\int_{-1}^{1}\left(x+\frac{1}{2}\right) d x=\left.\left(\frac{1}{2} x^{2}+\frac{1}{2} x\right)\right|_{-1} ^{1}=1
$$

$5(11 \mathrm{pts})$.(Source: $15.5 .3,4$) The sides of the triangle are $y=0, x=6$, and $y=3 x$, the same as the region of integration in problem 3a. The surface area is the integral of

$$
d S=\sqrt{1+z_{x}^{2}+z_{y}^{2}} d x d y=\sqrt{1+(2 x)^{2}+3^{2}} d x d y
$$

over the triangle. This can be written either of two ways:

$$
\int_{0}^{2} \int_{3 y}^{6} \sqrt{4 x^{2}+10} d x d y=\int_{0}^{6} \int_{0}^{x / 3} \sqrt{4 x^{2}+10} d y d x
$$

$6(15 \mathrm{pts})$.(Source: $15.3 .27,15.7 .24)$ The ellipsoid is symmetric across the $x y$-plane, so the volume is double the volume above that plane. You can write the volume as either a triple integral in cylindrical coordinates $(d V=r d z d r d \theta)$:

$$
2 \int_{0}^{2 \pi} \int_{0}^{3} \int_{0}^{\sqrt{64-4 r^{2}}} d z r d r d \theta
$$

or a double integral in polar coordinates $(d A=r d r d \theta)$:

$$
2 \int_{0}^{2 \pi} \int_{0}^{3} r\left(\sqrt{64-4 r^{2}}\right) d r d \theta
$$

After one integration, the triple integral becomes exactly this double integral. Proceeding,

$$
2 \int_{0}^{2 \pi}\left(-\left.\frac{1}{8} \cdot \frac{2}{3}\left(64-4 r^{2}\right)^{3 / 2}\right|_{0} ^{3}\right) d \theta=\frac{\pi}{3}\left(64^{3 / 2}-28^{3 / 2}\right)
$$

or, $\frac{\pi}{3}\left(512-28^{3 / 2}\right)=\frac{8 \pi}{3}\left(64-t^{3 / 2}\right)$.
$7(19 \mathrm{pts})$.(Source: $15.8 .25,26)$ In spherical coordinates, the cone is $\phi=\frac{\pi}{4}$, the sphere is $\rho=2$, the integrand is ρ, and $d V=\rho^{2} \sin \phi d \rho d \phi d \theta$, and so the triple integral is

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{2} \rho^{3} \sin \phi d \rho d \phi d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{\pi / 4} \sin \phi d \phi \int_{0}^{2} \rho^{3} d \rho \\
= & 2 \pi \cdot\left(-\left.\cos \phi\right|_{0} ^{\pi / 4}\right) \cdot\left(\left.\frac{1}{4} \rho^{4}\right|_{0} ^{2}\right)=2 \pi\left(1-\frac{1}{\sqrt{2}}\right) \frac{1}{4} 2^{4},
\end{aligned}
$$

or $4 \pi(2-\sqrt{2})$.
The integral is prohibitively difficult using cylindrical coordinates. Since the cone and sphere intersect at $x^{2}+y^{2}=2$, the integral starts as

$$
\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{r}^{\sqrt{4-r^{2}}} r \sqrt{r^{2}+z^{2}} d z d r d \theta
$$

