MATH 221-02 (Kunkle), Quiz 2
$10 \mathrm{pts}, 10$ minutes

Name:
Jan 25, 2024
$1(10 \mathrm{pts})$. In each part, find the point (x, y, z) of intersection or show that none exists. a. The point of intersection of the lines

$$
\begin{array}{lll}
x=2 & y=t-5 & z=-3+2 t \\
x=5-s & y=-15+4 s & z=7-2 s
\end{array}
$$

b. The point of intersection of the lines

$$
\begin{array}{lll}
x=2 & y=t-5 & z=-3+2 t \\
x=5-s & y=-15+4 s & z=8-2 s
\end{array}
$$

Solution:

1a.(Source: 12.5.21) Set the coordinates equal and solve for s and t :

$$
\begin{array}{rlrl}
2 & =5-s \\
t-5 & =-15+4 s & & =3 \tag{1}\\
-3+2 t & =7-2 s
\end{array} \Rightarrow \quad 4 s-t=10
$$

The 1 st and 2 nd equations yield $t=2, s=3$, and when we check, these also satisfy the 3 rd. Therefore, the solution to (1) is , $s=3, t=2$. Substituting these into the equation of either line gives the intersection point $(x, y, z)=(2,-3,1)$.

1b.(Source: 12.5.19) Likewise, solve

$$
\begin{align*}
2 & =5-s \\
t-5 & =-15+4 s \tag{2}\\
-3+2 t & =8-2 s
\end{aligned} \Rightarrow \begin{aligned}
s & =3 \\
4 s-t & =10 \\
2 s+2 t & =11
\end{align*}
$$

The 1st and 2nd equations again yield $t=2, s=3$, but when we check the third,

$$
2 \cdot 3+2 \cdot 2=10 \neq 11
$$

and so (2) has no solution and lines don't intersect.

