MATH 221-02 (Kunkle), Quiz 7
10 pts, 10 minutes

Name:
Mar 28, 2024

1 (10 pts). Evaluate the double integral $\iint_{P}(x-y) e^{x+y} d A$, where P is the rectangle bounded by the lines $x=y-1, x=y+2, y=-x$, and $y=-x+3$.
1.(Source: 15.9.24) Let $u=x-y$ and $v=x+y$. Solve for x and y to obtain $x=\frac{1}{2} u+\frac{1}{2} v$ and $y=\frac{1}{2} v-\frac{1}{2} u$. Calculate the Jacobian:

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left\|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right\|=\left\|\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right\|=|1 / 4-(-1 / 4)|=1 / 2
$$

The integral is

$$
\begin{aligned}
\int_{-1}^{2} \int_{0}^{3} u e^{v} \frac{1}{2} d v d u & =\frac{1}{2} \int_{-1}^{2} u d u \int_{0}^{3} e^{v} d v \\
& =\frac{1}{2}\left(\left.\frac{1}{2} u^{2}\right|_{-1} ^{2}\right)\left(\left.e^{v}\right|_{0} ^{3}\right) \\
& =\frac{3}{4}\left(e^{3}-1\right)
\end{aligned}
$$

(Since $\frac{\partial(x, y)}{\partial(u, v)}$ is a constant, it could also be calculated as the reciprocal of $\frac{\partial(u, v)}{\partial(x, y)}$, which avoids the work of solving for x and y in terms of u and v.)

