MATH 221-02 (Kunkle), Quiz 8
$10 \mathrm{pts}, 10$ minutes

Name:
April 4, 2024

1 (10 pts). Evaluate the given line integral.
a. $\int_{D}(2 x+y) d s$, where D is the line segment from $(0,1)$ to $(1,-1)$.
b. $\int_{C} \frac{y}{z} d x+\frac{x}{z} d y-\frac{x y}{z^{2}} d z$ where C is the line segment from $(1,0,3)$ to $(2,-1,2)$.

1a.(Source: 16.2.4) The simplest solution is to notice that the equation of the line from $(0,1)$ to $(1,-1)$ is $2 x+y=1$, so the integral is $\int_{D} 1 d s$, which simply equals the length of the line segment: $\sqrt{1^{2}+2^{2}}=\sqrt{5}$.

But if you didn't see that, you could always parametrize the line segment as

$$
x=t \quad y=1-2 t \quad d s=\frac{d s}{d t} d t=\sqrt{1^{2}+(-2)^{2}} d t=\sqrt{5} d t
$$

and write the integral as

$$
\int_{0}^{1}(2 t+(1-2 t)) \sqrt{5} d t=\int_{0}^{1} \sqrt{5} d t=\sqrt{5}
$$

1b.(Source: $16 \cdot 3 \cdot 10,15$) This time, parametrizing the curve leads to a difficult integral:

$$
\int_{0}^{1}\left(\frac{-t}{3-t}-\frac{1+t}{3-t}+\frac{t(1+t)}{(3-t)^{2}}\right) d t=\left.\left(\frac{-t^{2}-t}{3-t}\right)\right|_{0} ^{1}=-1
$$

It's far easier to look for a potential function for $\left\langle\frac{y}{z}, \frac{x}{z},-\frac{x y}{z^{2}}\right\rangle$, that is, a function $f(x, y, z)$ with the property that

$$
\begin{equation*}
f_{x}=\frac{y}{z} \quad f_{y}=\frac{x}{z} \quad f_{z}=-\frac{x y}{z^{2}} \tag{1}
\end{equation*}
$$

Here's a complete solution, but at any point, you might find such a function. As long as you demonstrate that the function you find satisfies (1), you don't need to complete all the following steps.

$$
f_{x}=\frac{y}{z} \Rightarrow f=\frac{x y}{z}+C(y, z) \Rightarrow f_{y}=\frac{x}{z}+C_{y}(y, z)=\frac{x}{z} \Rightarrow C_{y}(y, z)=0 \Rightarrow C(y, z)=C(z)
$$

Now differentiate f with respect to z :

$$
f_{z}=-\frac{x y}{z^{2}}+C_{z}(z)=-\frac{x y}{z^{2}} \Rightarrow C_{z}(z)=0 \Rightarrow C=\mathrm{constant}
$$

We needed only one potential function, but we found them all: the general potential function for $\left\langle\frac{y}{z}, \frac{x}{z},-\frac{x y}{z^{2}}\right\rangle$ is $f=\frac{x y}{z}+$ any constant.

We can choose the constant to be zero and, by the fundamental theorem of calculus for line integrals, the line integral is

$$
\int_{C} \nabla f \cdot d \mathbf{r}=\left.f(x, y, z)\right|_{(1,0,3)} ^{(2,-1,2)}=f(2,-1,2)-f(1,0,3)=-1-0=-1
$$

